【題目】如圖,把半徑為沿弦折疊,經(jīng)過圓心,則陰影部分的面積為__________.(結果保留

【答案】

【解析】

OODABD,交劣弧ABE,根據(jù)勾股定理求出AD,根據(jù)垂徑定理求出AB,分別求出扇形AOB和三角形AOB的面積,即可得出答案.

OODABD,交劣弧ABE,如圖:

∵把半徑為2的⊙O沿弦AB折疊,經(jīng)過圓心O,

OD=DE=1,OA=2,

∵在RtODA中,sinA==,

∴∠A=30°

∴∠AOE=60°,

同理∠BOE=60°

∴∠AOB=60°+60°=120°,

RtODA中,由勾股定理得:AD===,

ODABODO,

AB=2AD=2,

∴陰影部分的面積S=S扇形AOB-SAOB=-×2×1=-

故答案為:-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l x.y軸交于BA兩點,點D,C分別為線段ABOB的中點,連結CD,如圖,將DCB繞點B按順時針方向旋轉角,如圖.

(1)連結OC,AD,求證;

(2)0°<<180°時,若DCB旋轉至A,C,D三點共線時,求線段OD的長;

(3)試探索:180°<<360°時,是否還有可能存在A,CD三點共線的情況,若存在,求出此直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=2x+b分別交x,y軸于點A、C,拋物線y=ax2+x+4經(jīng)過A、C兩點,交x軸于另外一點B

1)求拋物線的解析式;

2)點P在第一象限內拋物線上,連接PBPC,作平行四邊形PBDCDEy軸于點E,設點P 的橫坐標為t,線段DE的長度為d,求dt之間的函數(shù)關系式.

3)在(2)的條件下,延長BD交直線AC與點F,連接OF,若∠AFO=BFO,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對給定的一張矩形紙片進行如下操作:先沿折疊,使點落在邊上(如圖①),再沿折疊,這時發(fā)現(xiàn)點恰好與點重合(如圖②)

(1)根據(jù)以上操作和發(fā)現(xiàn),則____;

(2)將該矩形紙片展開,如圖③,折疊該矩形紙片,使點與點重合,折痕與相交于點,再將該矩形紙片展開.

求證:;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,點D是弧AC的中點,∠COB60°,過點CCEAD,交AD的延長線于點E

1)求證:CE為⊙O的切線;

2)若CE,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OAOB,ABx軸于點C,點A1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達式;

2)在x軸的負半軸上存在一點P,使得SAOP=SAOB,求點P的坐標;

3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax+1)(x3)與x軸交于A、B兩點,拋物線與x軸圍成的封閉區(qū)域(不包含邊界),僅有4個整數(shù)點時(整數(shù)點就是橫縱坐標均為整數(shù)的點),則a的取值范圍_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系內的點M滿足橫、縱坐標都為整數(shù),則把點M叫做整點.例如:P1,0)、Q2,﹣2)都是整點.拋物線ymx24mx+4m2m0)與x軸交于點AB兩點,若該拋物線在AB之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是(  )

A. m1B. m≤1C. 1m≤2D. 1m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.乙兩人進行跑步訓練,他們所跑的路程y(米)與時間x(秒)之間的關系如圖所示,則下列說法錯誤的是( 

A. 離終點40米處,乙追上甲B. 甲比乙遲3秒到終點

C. 甲跑步的速度是5/D. 乙跑步的速度是/

查看答案和解析>>

同步練習冊答案