如圖,直角梯形OABC中,AB∥OC,點A坐標(biāo)為(0,6),點C坐標(biāo)為(3,0),BC=,一拋物線過點A、B、 C.
(1)填空:點B的坐標(biāo)為 ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.
(1)(4,6).(2)y=2x2-8x+6.(3).
解析試題分析:(1)可設(shè)點B的坐標(biāo)為(a,6),根據(jù)兩點間的距離公式即可得到關(guān)于a的方程,解方程求得a的值,進(jìn)一步得到點B的坐標(biāo).
(2)已知拋物線過A,B,C三點,可根據(jù)三點的坐標(biāo)用待定系數(shù)法求出拋物線的解析式.
(3)設(shè)以線段EF為直徑的圓的半徑為r,那么可用半徑r表示出E,F(xiàn)兩點的坐標(biāo),然后根據(jù)E,F(xiàn)在拋物線上,將E,F(xiàn)的坐標(biāo)代入拋物線的解析式中,可得出關(guān)于r的方程,解方程即可得出的r的值.
(1)設(shè)點B的坐標(biāo)為(a,6),依題意有
(a-3)2+62=()2,
解得a1=4,a2=2(不合題意舍去),
故點B的坐標(biāo)為(4,6).
(2)令拋物線的解析式為y=ax2+bx+c,
則,
解得,
∴拋物線的解析式為y=2x2-8x+6.
(3)拋物線對稱軸為x=2,
設(shè)E的坐標(biāo)為(2-r,r),則F的坐標(biāo)為(2+r,r),
而E點在拋物線y=2x2-8x+6上,
∴r=2(2-r)2-8(2-r)+6;
解得r1=,r2=(舍去);
故該圓的半徑r=.
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(點A在點B的左側(cè)),與y軸交于點C .點A和點B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個單位時,則它恰好過原點,且與x軸兩交點間的距離為4.
(1)求二次函數(shù)的表達(dá)式;
(2)在二次函數(shù)的圖象的對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出點P坐標(biāo);若不存在,請說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點為D,在x軸上是否存在這樣的點F,使得?若存在,求出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某瓜果基地市場部為指導(dǎo)該基地某種蔬菜的生產(chǎn)和銷售,對往年的市場行情和生產(chǎn)情況進(jìn)行了調(diào)查,提供了如下兩個信息圖,如甲、乙兩圖。
注:甲、乙兩圖中的A、B、C、D、E、F、G、H所對應(yīng)的縱坐標(biāo)分別指相應(yīng)月份每千克該種蔬菜的售價和成本(生產(chǎn)成本6月份最低,甲圖的圖象是線段,乙圖的圖象是拋物線的一部分)。請你根據(jù)圖象提供的信息說明:
(1)在3月份出售這種蔬菜,每千克的收益是多少元?(收益=售價-成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?最大收益是多少?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知OA=2,OC=4,⊙M與軸相切于點C,與軸交于A,B兩點,∠ACD=90°,拋物線經(jīng)過A,B,C三點.
(1)求證:∠CAO=∠CAD;
(2)求弦BD的長;
(3)在拋物線的對稱軸上是否存在點P使ΔPBC是以BC為腰的等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形ABCD中,AB=1,BC=3,點E為BC邊上的動點(點E與點B、C不重合),設(shè)BE=x.
操作:在射線BC上取一點F,使得EF=BE,以點F為直角頂點、EF為邊作等腰直角三角形EFG,設(shè)△EFG與矩形ABCD重疊部分的面積為S.
(1)求S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請直接寫出最大值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B(3,0),將點B向右平移3個單位得點C.
(1)求二次函數(shù)的解析式;
(2)點M在線段OC上,平面內(nèi)有一點Q,使得四邊形ABMQ為菱形,求點M坐標(biāo);
(3)點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點運動時,點D、點E、點F也隨之運動);
①當(dāng)點E在二次函數(shù)的圖像上時,求OP的長;
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,若P點運動t秒時,直線AC與以DE為直徑的⊙M相切,直接寫出此刻t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標(biāo).
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) | |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com