分析 連接PP′交CQ于D,根據(jù)菱形的對角線互相垂直平分可得PP′⊥CQ,CD=DQ,用t表示出CD,過點(diǎn)P作PO⊥AC于O,可得四邊形CDPO是矩形,再判斷出△ABC是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠A=45°,從而得到△APO是等腰直角三角形,再用t表示出PO,然后根據(jù)矩形的對邊相等列出方程求解即可.
解答 解:解:如圖,連接PP′交CQ于D,
∵四邊形QPCP′為菱形,
∴PP′⊥CQ,CD=DQ,
∵點(diǎn)Q的速度是每秒1cm,
∴CD=$\frac{1}{2}$CQ=$\frac{1}{2}$(12$\sqrt{2}$-$\sqrt{2}$t)cm,
過點(diǎn)P作PO⊥AC于O,
則四邊形CDPO是矩形,
∴CD=PO,
∵∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
∴∠A=45°,
∴PO=$\frac{\sqrt{2}}{2}$AP,
∵點(diǎn)P的運(yùn)動(dòng)速度是每秒 2cm,
∴PO=$\frac{\sqrt{2}}{2}$×2t=$\sqrt{2}$tcm,
∴$\frac{1}{2}$(12$\sqrt{2}$-$\sqrt{2}$t)=$\sqrt{2}$t,
解得t=4,
故答案為4
點(diǎn)評 本題考查了翻折變換,菱形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出矩形和等腰直角三角形是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
速度(km/h) | 所走的路程(km) | 所用時(shí)間(h) | |
出發(fā)后第一小時(shí)內(nèi)行駛 | x | x | 1 |
出發(fā)一小時(shí)以后行駛 | 1.5x | 180-x | $\frac{180-x}{1.5x}$ |
原計(jì)劃行駛 | x | 180 | $\frac{180}{x}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6a2b2=3ab•2ab | B. | -8x2+8x-2=-2(2x-1)2 | ||
C. | 2x2+8x-1=2x(x+4)-1 | D. | a2-1=a(a-$\frac{1}{a}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com