【題目】張家界市為了治理城市污水,需要鋪設一段全長為300米的污水排放管道,鋪設120米后,為了盡可能減少施工對城市交通所造成的影響,后來每天的工作量比原計劃增加20%,結(jié)果共用了27天完成了這一任務,求原計劃每天鋪設管道多少米?

【答案】解:設原計劃每天鋪設管道x米, 依題意得: ,
解得x=10,
經(jīng)檢驗,x=10是原方程的解,且符合題意.
答:原計劃每天鋪設管道10米
【解析】設原計劃每天鋪設管道x米,根據(jù)需要鋪設一段全長為300米的污水排放管道,鋪設120米后,為了盡可能減少施工對城市交通所造成的影響,后來每天的工作量比原計劃增加20%,結(jié)果共用了27天完成了這一任務,根據(jù)等量關(guān)系:鋪設120米管道的時間+鋪設(300﹣120)米管道的時間=27天,可列方程求解.
【考點精析】解答此題的關(guān)鍵在于理解分式方程的應用的相關(guān)知識,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C為AB延長線上一點,動點P從點A出發(fā)沿AC方向以lcm/s的速度運動,同時動點Q從點C出發(fā)以相同的速度沿CA方向運動,當兩點相遇時停止運動,過點P作AB的垂線,分別交⊙O于點M和點N,已知⊙O的半徑為l,設運動時間為t秒.
(1)若AC=5,則當t=時,四邊形AMQN為菱形;當t=時,NQ與⊙O相切;
(2)當AC的長為多少時,存在t的值,使四邊形AMQN為正方形?請說明理由,并求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上的一點,將一直角三角板如圖擺放,過點O作射線OE平分∠BOC.

(1)如圖1,如果∠AOC=40°,依題意補全圖形,寫出求∠DOE度數(shù)的思路(不必寫出完整的推理過程);

(2)當直角三角板繞點O順時針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,請你直接用含α的代數(shù)式表示∠DOE的度數(shù);

(3)當直角三角板繞點O繼續(xù)順時針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤AOC≤180°,0°≤DOE≤180°)之間有怎樣的數(shù)量關(guān)系?請直接寫出你的發(fā)現(xiàn).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.

(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E、F分別是ABCD的中點,AFDE相交于點GCEBF相交于點H

(1)求證:四邊形EHFG是平行四邊形;

(2)ABCD應滿足什么條件時,四邊形EHFG是矩形?并說明理由;

(3)ABCD應滿足什么條件時,四邊形EHFG是正方形?(不要說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設運動時間為t(s)(0<t<4),解答下列問題:

(1)設△APQ的面積為S,當t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值;′
(3)當t為何值時,△APQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李先生參加了某電腦公司推出的分期付款購買電腦活動,他購買的電腦價格為1.2萬元,交了首付4000元之后每期付款y元,x個月結(jié)清余款.

(1)寫出yx的函數(shù)關(guān)系式.

(2)如打算每月付款不超過500元,李先生至少幾個月才能結(jié)清余款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

A、B、C為數(shù)軸上三點,若點CA的距離是點CB的距離2倍,我們就稱點C是(A,B)的妙點.

例如,如圖1,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的妙點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的妙點,但點D是(B,A)的妙點.

知識運用:如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣2,點N所表示的數(shù)為4.

(1)數(shù)   所表示的點是(M,N)的妙點;

(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣40,點B所表示的數(shù)為20.現(xiàn)有一只電子螞蟻P從點B出發(fā)向左運動,到達點A停止.P點運動多少個單位時,P、AB中恰有一個點為其余兩點的妙點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人民網(wǎng)為了解百姓對時事政治關(guān)心程度,特對18~35歲的青年人每天發(fā)微博數(shù)量進行調(diào)查,設一個人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當m≥10時為甲級,當5≤m<10時為乙級,當0≤m<5時為丙級,現(xiàn)隨機抽取20個符合年齡條件的青年人開展調(diào)查,所抽青年人的“日均發(fā)微博條數(shù)”的數(shù)據(jù)如下:

0

8

2

8

10

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)樣本數(shù)據(jù)中為甲級的頻率為;(直接填空)
(2)求樣本中乙級數(shù)據(jù)的中位數(shù)和眾數(shù).
(3)從樣本數(shù)據(jù)為丙級的人中隨機抽取2人,用列舉法或樹狀圖求抽得2個人的“日均發(fā)微博條數(shù)”都是3的概率.

查看答案和解析>>

同步練習冊答案