【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點(diǎn)P,滿足S△AOP=1,請直接寫出點(diǎn)P的坐標(biāo).
【答案】
(1)解:將A(﹣2,0)、O(0,0)代入解析式y(tǒng)=﹣x2+bx+c,得c=0,﹣4﹣2b+c=0,
解得c=0,b=﹣2,
所以二次函數(shù)解析式:y=﹣x2﹣2x=﹣(x+1)2+1
(2)解:∵AO=2,S△AOP=1,
∴P點(diǎn)的縱坐標(biāo)為:±1,
∴﹣x2﹣2x=±1,
當(dāng)﹣x2﹣2x=1,解得:x1=x2=﹣1,
當(dāng)﹣x2﹣2x=﹣1時(shí),
解得:x1=﹣1+ ,x2=﹣1﹣ ,
∴點(diǎn)P的坐標(biāo)為(﹣1,1)或(﹣1+ ,﹣1))或(﹣1﹣ ,﹣1)
【解析】(1)把A(﹣2,0)、O(0,0)代入解析式y(tǒng)=﹣x2+bx+c,可得出二次函數(shù)解析式;(2)利用三角形的面積可得出P點(diǎn)的縱坐標(biāo),可求出點(diǎn)P的橫坐標(biāo),即可得出點(diǎn)P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.
(1)“特征數(shù)”為{﹣1,2,3}的函數(shù)解析式為 , 將“特征數(shù)”為{0,1,1}的函數(shù)向下平移兩個(gè)單位以后得到的函數(shù)解析式為;
(2)我們把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為“整點(diǎn)”,試問:在上述兩空填寫的函數(shù)圖象圍成的封閉圖形(包含邊界)內(nèi)共有多少個(gè)整點(diǎn)?請給出詳細(xì)的運(yùn)算過程;
(3)定義“特征數(shù)”的運(yùn)算:①{a1 , b1 , c1}+{a2 , b2 , c2}={a1+a2 , b1+b2 , c1+c2};②λ{(lán)a1 , b1 , c1}={λa1 , λb1 , λc1}(其中λ為任意常數(shù)).試問:“特征數(shù)”為{﹣1,2,3}+λ{(lán)0,1,﹣1}的函數(shù)是否過定點(diǎn)?如果過定點(diǎn),請計(jì)算出該定點(diǎn)坐標(biāo);如果不存在,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,BC=AC=2,D是斜邊AB上一個(gè)動(dòng)點(diǎn),把△ACD沿直線CD折疊,點(diǎn)A落在同一平面內(nèi)的A′處,當(dāng)A′D平行于Rt△ABC的直角邊時(shí),AD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(6,8),OA=OB,點(diǎn)P在線段OB上,點(diǎn)Q在y軸的正半軸上,OP=2OQ,過點(diǎn)Q作x軸的平行線分別交OA,AB于點(diǎn)E,F(xiàn).
(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使△PEF為直角三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=kx+b(k≠0)的圖象與x軸、y軸交于A、B兩點(diǎn),A(﹣2,0),B(0,1).
(1)求直線l的函數(shù)表達(dá)式;
(2)若P是x軸上的一個(gè)動(dòng)點(diǎn),請直接寫出當(dāng)△PAB是等腰三角形時(shí)P的坐標(biāo);
(3)在y軸上有點(diǎn)C(0,3),點(diǎn)D在直線l上,若△ACD面積等于4,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M過原點(diǎn)O,與x軸交于A(4,0),與y軸交于B(0,3),點(diǎn)C為劣弧AO的中點(diǎn),連接AC并延長到D,使DC=4CA,連接BD.
(1)求⊙M的半徑;
(2)證明:BD為⊙M的切線;
(3)在直線MC上找一點(diǎn)P,使|DP﹣AP|最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com