【題目】某機(jī)場(chǎng)為了方便旅客換乘,計(jì)劃在一、二層之間安裝電梯,截面設(shè)計(jì)圖如圖所示,已知兩層ADBC平行,層高AB8米,A、D間水平距離為5米,∠ACB21.5°,

1)通過(guò)計(jì)算說(shuō)明身高2.4米的人在豎直站立的情況下,搭乘電梯在D處會(huì)不會(huì)碰到頭部;

2)若采用中段加平臺(tái)設(shè)計(jì)(如圖虛線所示),已知平臺(tái)MNBC,且AM段和NC段的坡度均為12(坡度是指坡面的鉛直高度與水平寬度的比),求平臺(tái)MN的長(zhǎng)度.

(參考數(shù)據(jù):sin21.5°,cos21.5°,tan21.5°

【答案】1)會(huì)碰到頭部;(2MN4米.

【解析】

1)先過(guò)點(diǎn)DGDAD,交AC于點(diǎn)G,根據(jù)∠ACB=21.5°,ADCB,得出∠DAG=21.5°,再根據(jù)正切定理求出DG的長(zhǎng),然后與人的身高進(jìn)行比較,即可得出答案;

2)根據(jù)AB的長(zhǎng)求出CB,再過(guò)點(diǎn)MMEAB,垂足為點(diǎn)E,過(guò)點(diǎn)NNFCD,垂足為點(diǎn)F,設(shè)FN=x,則AE=8x,根據(jù)AM段和NC段的坡度i=12,求出EMCF的長(zhǎng),最后根據(jù)MN=BC﹣(EM+CF),即可求出答案.

1)作GDAD,交AC于點(diǎn)G

∵∠ACB=21.5°,ADBC,∴∠DAG=21.5°,∴DG=tan21.5°×5=0.4×5=22.4,∴會(huì)碰到頭部;

2)∵AB=8,∴CB=AB÷tan21.5°=8÷=20

過(guò)點(diǎn)MMEAB,垂足為點(diǎn)E,過(guò)點(diǎn)NNFCD,垂足為點(diǎn)F,設(shè)FN=x,則AE=8x

AM段和NC段的坡度i=12,∴EM=28x=162xCF=2x,∴EM+CF=162x+2x=16,∴MN=BC﹣(EM+CF=2016=4(米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游團(tuán)于早上800從某旅行社出發(fā),乘大巴車前往珠海長(zhǎng)隆旅游,珠海長(zhǎng)隆離該旅行社有100千米,導(dǎo)游張某因有事情,于830從該旅行社自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比該旅游團(tuán)提前20分鐘到達(dá)珠海長(zhǎng)隆

1)大巴與小車的平均速度各是多少?

2)導(dǎo)游張某追上大巴的地點(diǎn)到珠海長(zhǎng)隆的路程有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,拋物線yax4216a0)交x軸于點(diǎn)E,FEF的左邊),交y軸于點(diǎn)C,對(duì)稱軸MNx軸于點(diǎn)H;直線yx+b分別交x,y軸于點(diǎn)AB

1)寫出該拋物線頂點(diǎn)D的坐標(biāo)及點(diǎn)C的縱坐標(biāo)(用含a的代數(shù)式表示).

2)若AFAHOH,求證:∠CEO=∠ABO

3)當(dāng)b>﹣4時(shí),以AB為邊作正方形,使正方形的另外兩個(gè)頂點(diǎn)一個(gè)落在拋物線上,一個(gè)落在拋物線的對(duì)稱軸上,求所有滿足條件的a及相應(yīng)b的值.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1ax+b的圖象與反比例函數(shù)y2的圖象交于點(diǎn)A(1,2)B(2,m)

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)請(qǐng)直接寫出y1≥y2時(shí)x的取值范圍;

(3)過(guò)點(diǎn)BBEx軸,ADBE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若∠DAC30°,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PAPB是半徑為1的⊙O的兩條切線,點(diǎn)AB分別為切點(diǎn),∠APB60°,OP與弦AB交于點(diǎn)C,與⊙O交于點(diǎn)D.陰影部分的面積是_____(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以40元/千克的進(jìn)價(jià)購(gòu)進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量 (千克)與銷售價(jià) (元/千克)成一次函數(shù)關(guān)系,其圖象如圖所示.

(1)求之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);

(2)若該商店銷售這批茶葉的成本不超過(guò)2800元,則它的最低銷售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC頂點(diǎn)A(6,0)、C0,4),直線分別交BA、OA于點(diǎn)DE,且DBA中點(diǎn)。

1)求k的值及此時(shí)△EAD的面積;

2)現(xiàn)向矩形內(nèi)隨機(jī)投飛鏢,求飛鏢落在△EAD內(nèi)的概率。(若投在邊框上則重投)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y(k≠0,x0)的圖象經(jīng)過(guò)頂點(diǎn)CD,若點(diǎn)C的橫坐標(biāo)為5,BE3DE,則k的值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案