已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(2,-3),C(3,0)三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,E是拋物線上的點,并且滿足△AEC的面積是△ADC面積的3倍,求點E的坐標;
(3)設(shè)點M是拋物線上,位于x軸的下方,且在對稱軸左側(cè)的一個動點,過M作x軸的平行線,交拋物線于另一點N,再作MQ⊥x軸于Q,NP⊥x軸于P.試求矩形MNPQ周長的最大值.
分析:(1)根據(jù)拋物線經(jīng)過A、B、C三點,用待定系數(shù)法即可求出未知數(shù)的值,從而求出二次函數(shù)的解析式.
(2)根據(jù)(1)中所求拋物線的解析式可求出頂點P的坐標,可求出△ACD的面積,代入三角形AEC的面積公式便可求出E點的縱作坐標,代入二次函數(shù)的關(guān)系式即可求出E點的坐標.
(3)設(shè)出M點的坐標,根據(jù)拋物線的對稱性可求出N點坐標,用x表示出MN、MQ的值,根據(jù)矩形的面積公式可列出L與x的關(guān)系式,根據(jù)二次函數(shù)的最值即可求出L的最大值.
解答:解:(1)把A(-1,0),B(2,-3),C(3,0)三點分別代入拋物線y=ax2+bx+c得,
a-b+c=0
4a+2b+c=-3
9a+3b+c=0
,
解得
a=1
b=-2
c=-3

故此拋物線的解析式為:y=x2-2x-3;

(2)D(1,-4),AC=4,S△ACD=
1
2
×4×4=8  (4分)
設(shè)E點的縱坐標為y,則S△AEC=
1
2
.AC.|y|=2|y|
由題意知S△AEC=3S△ADC
∴2|y|=24,|y|=12,y=±12(負值舍去)   5分
∴12=x2-2x-3即x1=5,x2=-3
∴E點的坐標是(-3,12)或(5,12);6分

(3)設(shè)M(x,y)則N(2-x,y)(-1<x<1)
MN=2-2x,MQ=-y=-x2+2x+3   7分
四邊形MNPQ的周長為
L=2(2-2x)+2(-x2+2x+3)=-2x2+10  8分
∴當x=0時,L有最大值10.  9分
點評:此題考查的是二次函數(shù)圖象上點的坐標特點、列函數(shù)關(guān)系式以及最值的求法,是中學階段的基本題目,但有一定的難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案