【題目】科技創(chuàng)新加速中國高鐵技術(shù)發(fā)展,某建筑集團(tuán)承擔(dān)一座高架橋的鋪設(shè)任務(wù),在合同期內(nèi)高效完成了任務(wù),這是記者與該集團(tuán)工程師的一段對話:

記者:你們是用9天完成4800米長的高架橋鋪設(shè)任務(wù)的?

工程師:是的,我們鋪設(shè)600米后,采用新的鋪設(shè)技術(shù),這樣每天鋪設(shè)長度是原來的2倍.

通過這段對話,請你求出該建筑集團(tuán)原來每天鋪設(shè)高架橋的長度.

【答案】該建筑集團(tuán)原來每天鋪設(shè)高架橋300米.

【解析】

設(shè)該建筑集團(tuán)原來每天鋪設(shè)高架橋x米,則采用新的鋪設(shè)技術(shù)后每天鋪設(shè)高架橋2x米,根據(jù)工作時間=工作總量÷工作效率,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

解:設(shè)該建筑集團(tuán)原來每天鋪設(shè)高架橋x米,則采用新的鋪設(shè)技術(shù)后每天鋪設(shè)高架橋2x米,

依題意,得:,

解得:x300,

經(jīng)檢驗(yàn),x300是原方程的解,且符合題意.

答:該建筑集團(tuán)原來每天鋪設(shè)高架橋300米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識背景:我們在第十一章《三角形》中學(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定,在第十三章《軸對稱》中學(xué)習(xí)了等腰三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識轉(zhuǎn)化角和邊,進(jìn)而解決問題.

問題:如圖1是等腰三角形,的中點(diǎn),以為腰作等腰,且滿足,連接并延長交的延長線于點(diǎn),試探究之間的數(shù)量關(guān)系.

1

發(fā)現(xiàn):(1之間的數(shù)量關(guān)系為 .

探究:(2)如圖2,當(dāng)點(diǎn)是線段上任意一點(diǎn)(除、外)時,其他條件不變,試猜想之間的數(shù)量關(guān)系,并證明你的結(jié)論.

2

拓展:(3)當(dāng)點(diǎn)在線段的延長線上時,在備用圖中補(bǔ)全圖形,并直接寫出的形狀.

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,BD的距離分別為1,2.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長APBC相交于點(diǎn)Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,點(diǎn)分別為邊、上的點(diǎn),,點(diǎn)、分別為、邊上的點(diǎn),連接,若線段的夾角為,則的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設(shè)某商場每件襯衫應(yīng)降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數(shù)式進(jìn)行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)延長線上一點(diǎn),于點(diǎn),半徑的倍.

的半徑;

如圖,弦,動點(diǎn)出發(fā)沿直徑運(yùn)動的過程中,圖中陰影部分的面積是否發(fā)生變化,若發(fā)生變化,請你說明理由;若不發(fā)生變化,請你求出陰影部分的面積;

如圖,動點(diǎn)出發(fā),在上按逆時針方向向運(yùn)動.連接,過的垂線,與的延長線交于點(diǎn),當(dāng)點(diǎn)運(yùn)動到什么位置時,取到最大值?求此時動點(diǎn)所經(jīng)過的弧長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CO上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長線相交于點(diǎn)PCE平分ACB,交AB于點(diǎn)E

1)求證:AC平分DAB;

2)求證:PCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的頂點(diǎn)在雙曲線的圖象上,直角邊軸上,,,連接,,則的值是(

A. 4 B. -4 C. 2 D. -2

查看答案和解析>>

同步練習(xí)冊答案