【題目】如圖,矩形窗戶邊框ABCD由矩形AEFD,矩形BNME,矩形CFMN組成,其中AE:BE=1:3.已知制作一個(gè)窗戶邊框的材料的總長是6米,設(shè)BC=x(米),窗戶邊框ABCD的面積為S(米2)
(1)①用x的代數(shù)式表示AB;
②求x的取值范圍.
(2)求當(dāng)S達(dá)到最大時(shí),AB的長.
【答案】(1)①AB=;②0<x<2;(2)x=1時(shí)S有最大值,此時(shí)AB=米
【解析】
(1)①設(shè)AE=a,根據(jù)題意列式即可得到結(jié)論;②解不等式即可得到結(jié)論;
(2)根據(jù)題意求得函數(shù)的解析式S=ABBC=,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
解:(1)①∵BC=x,
∴AD=EF=BC=x,
∵AE:BE=1:3,
∴設(shè)AE=a,
∴AB=CD=4a,MN=BE=3a,
∴AB+CD+MN=11a,
∵制作一個(gè)窗戶邊框的材料的總長是6米,
∴11a+3x=6,
∴,
∴AB=;
②∵AB>0,BC>0
∴>0且x>0
解得 :0<x<2;
(2)S=AB×BC
=
=+
∴當(dāng)x=1時(shí)S有最大值,
此時(shí)AB=(米).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,AC=2,求四邊形AODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),對(duì)稱軸為,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時(shí),隨的增大而增大
C.
D. 是一元二次方程的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知不等臂蹺蹺板AB長為3米,蹺蹺板AB的支撐點(diǎn)O到地面上的點(diǎn)H的距高OH=0.6米。當(dāng)蹺蹺板AB的一個(gè)端點(diǎn)A碰到地面時(shí),AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.
(1)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?
(2)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),點(diǎn)A到直線BH的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生的身體素質(zhì),泰興市教育行政部門規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
⑴在這次調(diào)查中一共調(diào)查了多少名學(xué)生?
⑵求戶外活動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
⑶求表示戶外活動(dòng)時(shí)間 1小時(shí)的扇形圓心角的度數(shù);
⑷本次調(diào)查中,學(xué)生參加戶外活動(dòng)的平均時(shí)間是否符合要求?戶外活動(dòng)時(shí)間的眾數(shù)和中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時(shí)點(diǎn)B與點(diǎn)D重合,讓沿這條直線向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)BD的長為x,與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017寧夏)在邊長為2的等邊三角形ABC中,P是BC邊上任意一點(diǎn),過點(diǎn) P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點(diǎn)P在BC邊的何處時(shí)都有PM+PN的長恰好等于三角形ABC一邊上的高;
(2)當(dāng)BP的長為何值時(shí),四邊形AMPN的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓周上一點(diǎn),連接AC、BC,以點(diǎn)C為端點(diǎn)作射線CD、CP分別交線段AB所在直線于點(diǎn)D、P,使∠1=∠2=∠A.
(1)求證:直線PC是⊙O的切線;
(2)若CD=4,BD=2,求線段BP的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com