【題目】給出下列說法,其中正確的是( )
①關(guān)于的一元二次方程,若,則方程一定沒有實(shí)數(shù)根;
②關(guān)于的一元二次方程,若,則方程必有實(shí)數(shù)根;
③若是方程的根,則;
④若,,為三角形三邊,方程有兩個(gè)相等實(shí)數(shù)根,則該三角形為直角三角形.
A. ①② B. ①④ C. ①②④ D. ①③④
【答案】C
【解析】
根據(jù)判別式的意義對①進(jìn)行判斷;
由,得到,則可根據(jù)判別式的意義對②進(jìn)行判斷;
根據(jù)一元二次方程的解的定義對③進(jìn)行判斷;
根據(jù)判別式的意義得到,然后整理根據(jù)勾股定理的逆定理可對④進(jìn)行判斷.
關(guān)于的一元二次方程(),若,則方程一定沒有實(shí)數(shù)根,所以①正確;
關(guān)于的一元二次方程(),若,則,則方程必有實(shí)數(shù)根,所以②正確;
若是方程的根,則,當(dāng)時(shí),,所以③錯(cuò)誤;
若、、為三角形三邊,方程有兩個(gè)相等實(shí)數(shù)根,則,即,則該三角形為直角三角形,所以④正確.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求直線OA和二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),
①當(dāng)PC的長最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)S△PCO=S△CDO時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)分別為A(0,3),B(﹣4,0),C(2,0),且△BCD與△ABC全等,則點(diǎn)D坐標(biāo)可以是( 。
A.(﹣2,﹣3)B.(2,﹣3)C.(2,3)D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分別是AC、BC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EB方向勻速運(yùn)動(dòng),兩者速度均為1cm/s;當(dāng)其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另外一點(diǎn)也停止運(yùn)動(dòng).連接PQ、PF,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<4).解答下列問題:
(1)當(dāng)t為何值時(shí),△EPQ為等腰三角形?
(2)如圖①,設(shè)四邊形PFBQ的面積為ycm2,求y與t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),四邊形PFBQ的面積與△ABC的面積之比為2:5?
(4)如圖②,連接FQ,是否存在某一時(shí)刻,使得PF與QF互相垂直?若存在,求出此時(shí)t的值;若不存,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程,則,∴
求、.則有,∴.解得,.則有,∴.解得或,根據(jù)以上材料解答下列各題:
若.求的值.
.求的值.
若.求的值.
若,,表示的三邊,且,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC的平分線與在∠ACE的平分線相交于點(diǎn)D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),可知△ABP∽△PCD.(不要求證明)
探究:如圖②,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD.
拓展:如圖③,在△ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2).
(1)求直線AB的函數(shù)表達(dá)式;
(2)若在y軸上存在一點(diǎn)M,使MA+MB的值最小,請求出點(diǎn)M的坐標(biāo);
(3)在x軸上是否存在點(diǎn)N,使△AON是等腰三角形?如果存在,直接寫出點(diǎn)N的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com