【題目】如圖,路燈下一墻墩(用線段AB表示)的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一顆大樹(shù),它的影子是MN.

(1)指定路燈的位置(用點(diǎn)P表示);
(2)在圖中畫出表示大樹(shù)高的線段;
(3)若小明的眼睛近似地看成是點(diǎn)D,試畫圖分析小明能否看見(jiàn)大樹(shù).

【答案】
(1)解:點(diǎn)P是燈泡的位置


(2)解:線段MG是大樹(shù)的高


(3)解:視點(diǎn)D看不到大樹(shù),GM處于視點(diǎn)的盲區(qū)


【解析】根據(jù)中心投影的特點(diǎn)可知,連接物體和它影子的頂端所形成的直線必定經(jīng)過(guò)點(diǎn)光源.所以分別把AB和DE的頂端和影子的頂端連接并延長(zhǎng)可交于一點(diǎn),即點(diǎn)光源的位置,再由點(diǎn)光源出發(fā)連接MN頂部N的直線與地面相交即可找到MN影子的頂端.線段GM是大樹(shù)的高.若小明的眼睛近似地看成是點(diǎn)D,則看不到大樹(shù),GM處于視點(diǎn)的盲區(qū).
【考點(diǎn)精析】掌握中心投影是解答本題的根本,需要知道手電筒、路燈和臺(tái)燈的光線可以看成是從一個(gè)點(diǎn)發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過(guò)投影中心與物體頂端作直線,直線與投影面的交點(diǎn)與物體的底端之間的線段即為物體的影子.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點(diǎn)O旋轉(zhuǎn)150°后得到△A1B1O,則點(diǎn)A1坐標(biāo)為(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,連接AA′,若∠1=22°,則∠B的度數(shù)是(

A.67°
B.62°
C.82°
D.72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰△ABC中,AD⊥BC于點(diǎn)D,且AD= BC,則△ABC底角的度數(shù)為(
A.45°
B.75°
C.45°或15°或75°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:有一個(gè)直角三角形ABC,∠C=90°,AC=10,BC=5,一條線段PQAB,P、Q兩點(diǎn)分別在AC和過(guò)點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),問(wèn)P點(diǎn)運(yùn)動(dòng)到離A的距離等于___________時(shí),ΔABC和ΔPQA全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)AB、C在小正方形的頂點(diǎn)上.

在圖中畫出與關(guān)于直線l成軸對(duì)稱的;

三角形ABC的面積為______;

AC為邊作與全等的三角形,則可作出______個(gè)三角形與全等;

在直線l上找一點(diǎn)P,使的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD折疊起來(lái),使其對(duì)角頂點(diǎn)A與C重合,若長(zhǎng)方形的長(zhǎng)BC為8,寬AB為4,求折疊后重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(﹣1,0)、C(0,﹣3)兩點(diǎn),與x軸交于另一點(diǎn)B.

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案