(2007•哈爾濱)如圖,矩形紙片ABCD中,AB=8cm,把矩形紙片沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,若AF=cm,則AD的長(zhǎng)為( )

A.4cm
B.5cm
C.6cm
D.7cm
【答案】分析:由折疊的性質(zhì)可證AF=FC.在Rt△ADF中,由勾股定理求AD的長(zhǎng).
解答:解:由折疊的性質(zhì)知,AE=CD,CE=AD
∴△ADC≌△CEA,∠EAC=∠DCA
∴AF=CF=cm,DF=CD-CF=
在Rt△ADF中,由勾股定理得,AD=6cm.
故選C.
點(diǎn)評(píng):本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②全等三角形的判定和性質(zhì),勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•哈爾濱)如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著BC邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案