(2010•柳州)如圖,過點P(-4,3)作x軸,y軸的垂線,分別交x軸,y軸于A、B兩點,交雙曲線y=(k≥2)于E、F兩點.
(1)點E的坐標(biāo)是______,點F的坐標(biāo)是______;(均用含k的式子表示)
(2)判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
(3)記S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若沒有,請你說明理由.

【答案】分析:(1)把x=-4,y=3分別代入y=,求出對應(yīng)的y值與x值,從而得出點E、點F的坐標(biāo);
(2)根據(jù)三角函數(shù)的定義,在Rt△PAB中與Rt△PEF中,分別求出tan∠PAB與tan∠PEF的值,然后由平行線的判定定理,得出EF與AB的位置關(guān)系;
(3)如果分別過點E、F作PF、PE的平行線,交點為P′,則四邊形PEP′F是矩形.所求面積S=S△PEF-S△OEF=S△P′EF-S△OEF=S△OME+S矩形OMP′N+S△ONF,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義,可用含k的代數(shù)式表示S,然后根據(jù)二次函數(shù)的性質(zhì)及自變量的取值范圍確定S的最小值.
解答:解:(1)E(-4,-),F(xiàn)(,3);

(2)結(jié)論EF∥AB.理由如下:
∵P(-4,3),
∴E(-4,-),F(xiàn)(,3),
即得PE=3+,PF=+4,
在Rt△PAB中,tan∠PAB=,
在Rt△PEF中,tan∠PEF=
∴tan∠PAB=tan∠PEF,
∴∠PAB=∠PEF,
∴EF∥AB;

(3)S有最小值.理由如下:
分別過點E、F作PF、PE的平行線,交點為P′.
由(2)知P′(
∵四邊形PEP′F是矩形,
∴S△P′EF=S△PEF,
∴S=S△PEF-S△OEF
=S△P′EF-S△OEF
=S△OME+S矩形OMP′N+S△ONF
=
=
=
又∵k≥2,此時S的值隨k值增大而增大,
∴當(dāng)k=2時,S最小=
∴S的最小值是
故答案為:(1)(-4,-),(,3).
點評:本題主要考查了三角函數(shù)的定義,平行線的判定,反比例函數(shù)比例系數(shù)的幾何意義及二次函數(shù)最小值的求法等知識點,綜合性較強,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月江蘇省鎮(zhèn)江市外國語學(xué)校九年級(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•柳州)如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在邊長為1的小正方形的頂點上.
(1)填空:∠ABC=______,BC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2010•柳州)如圖,從熱氣球P上測得兩建筑物A、B的底部的俯視角分別為45°和30°,如果A、B兩建筑物的距離為90m,P點在地面上的正投影恰好落在線段AB上,求熱氣球P的高度.(結(jié)果精確到0.01m,參考數(shù)據(jù):≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2010•柳州)如圖,AB為⊙O的直徑,且弦CD⊥AB于E,過點B的切線與AD的延長線交于點F.
(1)若M是AD的中點,連接ME并延長ME交BC于N.求證:MN⊥BC.
(2)若cos∠C=,DF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西柳州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•柳州)如圖,Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于D,若CD=3cm,則點D到AB的距離DE是( )

A.5cm
B.4cm
C.3cm
D.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西柳州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•柳州)如圖,點A、B、C是直線l上的三個點,圖中共有線段條數(shù)是( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

同步練習(xí)冊答案