【題目】如圖①,兩同心圓的圓心為O,大圓的弦AB與小圓相切于點P,已知兩圓的半徑分別為2和1.

(1)用陰影部分的扇形圍成一個圓錐(OA與OB重合),求該圓錐的底面半徑.

(2)用余下部分再圍成一個圓錐(如圖②所示),若一只小蟲從A點出發(fā),繞圓錐的側面爬行一周后又回到A點,求小蟲爬行的最短路線的長.

【答案】(1)圓錐的底面半徑為;(2)小蟲爬行的最短路線為.

【解析】

1)利用30°角的性質可求得∠A的度數(shù),進而求出∠AOB的度數(shù),可求優(yōu)弧AB的長度,除以2π即為圓錐的底面半徑;

2)由題意知,小蟲爬行的最短路線是弦AB的長,利用垂徑定理和勾股定理即可求得弦AB的長;

(1)連接OP,

則OP⊥AB,

∵OA=2,OP=1,

∴∠A=30°,

∴∠AOB=180°-30°-30°=120°,

∴優(yōu)弧AB的長為:

∴圓錐的底面半徑為:=

(2)由勾股定理得,AP=,

∵OP⊥AB,

∴AB=2AP=.

∴小蟲爬行的最短路線為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式為“單人組”和“雙人組”.小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù)的四個命題:

①當x=0時,y有最小值6;

m為任意實數(shù),x=2-m時的函數(shù)值大于x=2+m時的函數(shù)值;

③若函數(shù)圖象過點(a,m0) 和(bm0+1),其中a>0,b>2,則ab

④若m>2,且m是整數(shù),當mxm+1 時,y的整數(shù)值有(2m-2).

其中真命題有______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm /s,連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)當t為何值時,PQ∥BC.

(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2k-1)x+k2=0有兩個實根x1x2

(1) 求實數(shù)k的取值范圍

(2) 若方程兩實根x1、x2滿足x12-x22=0,求k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線ECAB的延長線于點P,連接ACBC.

1)求證:AC平分∠BAD.

2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,身高1.6米的小明從距路燈的底部(點O20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.

1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.

2)若路燈(點P)距地面8米,小明從AC時,身影的長度是變長了還是變短了?變長或變短了多少米?

查看答案和解析>>

同步練習冊答案