【題目】已知,計算,
,
.
猜想: (n為正整數);
(1)根據你的猜想計算:
①
② (n為正整數)
③
(2)通過以上規(guī)律請你進行下面的探索:
①
②
③
(3)判斷的個位數字是
【答案】猜想:;(1)①;②;③;(2)①;②;③;(3)5.
【解析】
根據已知的式子,找出規(guī)律,即可得到猜想的結論;
(1)①根據猜想的結論,當時,即可得到答案;
②根據猜想的結論,當時,通過計算,即可得到答案;
③根據猜想的結論,即可得到答案;
(2)根據(1)中的結論,即可得到答案;
(3)結合(1)(2)中的結論,通過變形化簡,即可得到答案.
解:根據題意,有
;
故答案為:;
(1)①∵,
∴;
故答案為:;
②∵,
∴,
∴;
故答案為:;
③∵
∴;
故答案為:;
(2)①;
②;
同理可知:
③;
(3)由(2)可知,
;
∴當,,時,有
,
∴;
∵,,,,,,……
∴的個位數字是2、4、8、6,每4個數字一個循環(huán);
∵,
∴的個位上的數字是6;
∴的個位上的數字是5;
故答案為:5.
科目:初中數學 來源: 題型:
【題目】如圖是某月的月歷表,在此月歷表上可以用一個矩形圈出個位置相鄰的數(如6,7,8,13,14,15,20,21,22).若圈出的9個數中,最大數與最小數的積為192,則這9個數的和為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,DF∥AB,DE∥BC,連接BD.
(1)求證:△DEB≌△BFD;
(2)若點D是AC邊的中點,當△ABC滿足條件_____時,四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反映了小明從家里到超市的時間與距離之間關系的一幅圖。
(1)圖中自變量和因變量各是什么?
(2)小明到達超市用了多少時間?超市離家多遠?
(3)分別求小明從家里到超市時的平均速度是多少?返回時的平均速度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次數學課上,老師要求學生根據圖中李亮與張鑫的對話內容,展開如下活動:
仔細閱讀對話內容:
活動:根據對話內容,提出一些數學問題,并解答.
下面是學生提出的兩個問題,請你列方程解答.
(1)如果張鑫沒有辦卡,他需要付多少錢;
(2)你認為購買多少元錢的書時辦卡與不辦卡花費相同.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為改善辦學條件,計劃采購A、B兩種型號的空調,已知采購3臺A型空調和2臺B型空調,需費用39000元;4臺A型空調比5臺B型空調的費用多6000元.
(1)求A型空調和B型空調每臺各需多少元;
(2)若學校計劃采購A、B兩種型號空調共30臺,且A型空調的臺數不少于B型空調的一半,兩種型號空調的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為矩形ABCD對角線BD的中點,直線EF經過點O分別與邊BC,AD交于點E, F,連接CF,若∠CEF=2∠CBD,∠CBD =30°,DC=,有下面的結論:①FD=BE;②∠EOD=150°;③BE2+AB2=AF2;④BC=6;⑤直線FC是線段OD的垂直平分線.其中正確的個數為( )個.
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com