如圖,PA、PB分別切⊙O于A、B,PA=10cm,C是劣弧AB上的點(不與點A、B重合),過點C的切線分別交PA、PB于點E、F.則△PEF的周長為    cm.
【答案】分析:利用切線長定理,可以得到:PA=PB,AE=EC,F(xiàn)C=FB,據(jù)此即可求解
解答:解:∵PA,PB是圓的切線.
∴PA=PB
同理,AE=EC,F(xiàn)C=FB.
三角形PEF的周長=PE+EF+PF=PE+PF+CF+EC=PE+AE+PF+FB=PA+PB=2PA=20cm.
故答案是20.
點評:本題主要考查了切線長定理,對于定理的認識,在圖形中找到切線長定理的基本圖形是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,已知∠P=50°,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,∠APB=30°,則∠ACB=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,PA,PB分別切⊙O于點A,B,點C是AB上一點,過C作⊙O的切線,交PA,PB于點D,E,若PA=6cm,則△PDE的周長是
12
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點,∠C=60°.
(1)求∠APB的大。
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,PA,PB分別切⊙O于點A和點B,C是
AB
上任一點,過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長是( 。

查看答案和解析>>

同步練習冊答案