【題目】如圖,D是△ABC的BC邊上一點(diǎn),連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在上.
(1)求證:AE=AB;
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的長(zhǎng).
【答案】(1)證明見解析;(2)BC=
【解析】分析: (1)由翻折的性質(zhì)得出△ADE≌△ADC,根據(jù)全等三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等得出∠AED=∠ACD,AE=AC,根據(jù)同弧所對(duì)的圓周角相等得出∠ABD=∠AED,根據(jù)等量代換得出∠ABD=∠ACD,根據(jù)等角對(duì)等邊得出AB=AC,從而得出結(jié)論;
(2)如圖,過點(diǎn)A作AH⊥BE于點(diǎn)H,根據(jù)等腰三角形的三線合一得出BH=EH=1,根據(jù)等腰三角形的性質(zhì)及圓周角定理得出∠ABE=∠AEB=ADB,根據(jù)等角的同名三角函數(shù)值相等及余弦函數(shù)的定義得出BH∶AB = 1∶3,從而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的長(zhǎng).
詳解:
(1)解 :由題意得△ADE≌△ADC,
∴∠AED=∠ACD,AE=AC
∵∠ABD=∠AED,
∴∠ABD=∠ACD
∴AB=AC
∴AE=AB
(2)解 :如圖,過點(diǎn)A作AH⊥BE于點(diǎn)H
∵AB=AE,BE=2
∴BH=EH=1
∵∠ABE=∠AEB=ADB,cos∠ADB=
∴cos∠ABE=cos∠ADB=
∴ =
∴AC=AB=3
∵∠BAC=90°,AC=AB
∴BC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】英國曼徹斯特大學(xué)的兩位科學(xué)家因?yàn)槌晒Φ貜氖蟹蛛x出石墨烯,榮獲了諾貝爾物理學(xué)獎(jiǎng).石墨烯目前是世上最薄卻也是最堅(jiān)硬的納米材料,同時(shí)還是導(dǎo)電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個(gè)數(shù)用科學(xué)記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)寫出的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過步(包含步)的教師有多少名?
(3)若在名被調(diào)查的教師中,選取日行走步數(shù)超過步(包含步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在步(包含步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連結(jié)CO,AD,∠BAD=20°,則下列說法中正確的是( )
A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三角形紙片,將紙片折疊,使點(diǎn)與點(diǎn)重合,折痕分別與邊交于點(diǎn).
(1)畫出直線;
(2)若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),請(qǐng)畫出點(diǎn);
(3)在(2)的條件下,聯(lián)結(jié),如果的面積為2,的面積為,那么的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=α°,∠COD在∠AOB內(nèi)部且∠COD=β°.
(1)若α,β滿足|α-2β|+(β-60)2=0,則①α= ;
②試通過計(jì)算說明∠AOD與∠COB有何特殊關(guān)系;
(2)在(1)的條件下,如果作OE平分∠BOC,請(qǐng)求出∠AOC與∠DOE的數(shù)量關(guān)系;
(3)若α°,β°互補(bǔ),作∠AOC,∠DOB的平分線OM,ON,試判斷OM與ON的位置關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com