如圖,(1)若___________,則△ABCAEF;(2)若E=_________,則△ABCAEF。

 

答案:
解析:

答案:(1) (2) ∠B

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源:蕭紅中學(四年制) 新概念數(shù)學 八年級上(人教版) 題型:059

  如圖所示,已知等邊△ABC和點P,設P到△ABC三邊AB,AC,BC的距離分別為h1,h2,h3,△ABC的高為h.

  若點P在一邊BC上,此時h3=0,則可得結(jié)論:h1+h2+h3=h(如圖(1)).

(1)

請直接應用上述信息解決下列問題:

當點P在△ABC內(nèi)部(如圖(2)),點P在△ABC外部(如圖(3))這兩種情況時上述結(jié)論是否還成立?若成立,請給予證明;若不成立,h1,h2,h3與h之間又有怎樣關系?請寫出你的猜想,不用證明.

(2)

若不應用上述信息,請?zhí)骄科渌姆椒▉碜C明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:三點一測叢書 九年級數(shù)學 上。ńK版課標本) 江蘇版課標本 題型:059

利用切線性質(zhì)證明等腰三角形

  如圖,已知:如圖(1),AB是⊙O的直徑,P是AB上的一點(與A、B不重合).QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:

  證明:連結(jié)OC.

  ∵OA=OC,∴∠A=∠1.

  ∵CD切⊙O于C點,

  ∴∠OCD=90°,

  ∴∠1+∠2=90°,

  ∴∠A+∠2=90°.

  在Rt△QPA中,∠QPA=90°,

  ∴∠A+∠Q=90°,

  ∴∠2=∠Q.∴DQ=DC.

  即△CDQ是等腰三角形.

問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖(2)所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

  如圖,已知正方形ABCD中,ECD邊上一點,FBC延長線上一點,且CE=CF

  (1)求證:BCE≌△DCF

  

  (2)BEC=60°,求EFD的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關問題,這種方法稱為面積法。請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。

(1)若BD=h,M時直線BC上的任意一點,M到AB、AC的距離分別為

①   若M在線段BC上,請你結(jié)合圖形①證明:= h;          

②   當點M在BC的延長線上時,,h之間的關系為      (請直接寫出結(jié)論,不必證明)                         

(2)如圖②,在平面直角坐標系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點M到的距離是3,請你利用以上結(jié)論求解點M的坐標。

                                 

                                          圖②


查看答案和解析>>

同步練習冊答案