(本題12分)如圖,二次函數(shù)的圖象與x軸交于兩個(gè)不同的點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,3),連結(jié)BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點(diǎn)D.

(1)求這個(gè)二次函數(shù)的解析式、點(diǎn)D的坐標(biāo)及直線BC的函數(shù)解析式;

(2)點(diǎn)Q在線段BC上,使得以點(diǎn)Q、D、B為頂點(diǎn)的三角形與△相似,求出點(diǎn)Q的坐標(biāo);

(3)在(2)的條件下,若存在點(diǎn)Q,請任選一個(gè)Q點(diǎn)求出△外接圓圓心的坐標(biāo).

 

【答案】

(1)D(1,0)(2)Q(2,)或(,)(3)M(,

【解析】

試題分析:解:(1)由題意,設(shè)二次函數(shù)為

把點(diǎn)C(0,3)代入得:

所以這個(gè)二次函數(shù)的解析式是 ……2分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2013030209151603451883/SYS201303020915490813557953_DA.files/image010.png">,所以拋物線的對稱軸是直線,點(diǎn)D的坐標(biāo)為(1,0). …………1分

由待定系數(shù)法得直線BC的解析式為. ………… 1分

(2)因?yàn)锳(-2,0),B(4,0),C(0,3),D(1,0).

所以O(shè)D=1,BD=3,CO=3,BO=4,AB=6,BC==5.

①  如圖1,當(dāng)時(shí),,即,得.

過點(diǎn)Q作軸于點(diǎn)H,則QH∥CO.所以.解得.

代入,得

所以,此時(shí),點(diǎn)Q的坐標(biāo)為(2,). ………… 2分

②如圖2,當(dāng)時(shí),,即,得

過點(diǎn)Q作軸于點(diǎn)G,則QG∥CO.所以.解得

代入,得

所以,此時(shí),點(diǎn)Q的坐標(biāo)為().…………2分

綜上所述,點(diǎn)Q坐標(biāo)為(2,)或(,).

(3)當(dāng)點(diǎn)Q的坐標(biāo)為(2,)時(shí),設(shè)圓心的M(,).

由MD=MQ,得.

解得,則M(). ………… 4分

考點(diǎn):本題考查了二次函數(shù)的性質(zhì)

點(diǎn)評:此類試題屬于難度一般的試題,考生在解答此類試題時(shí)一定要對二次函數(shù)的頂點(diǎn)坐標(biāo)公式熟練把握和運(yùn)用

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點(diǎn)y軸上,,,B點(diǎn)坐標(biāo)為(4,0).點(diǎn)是邊上一點(diǎn),且.點(diǎn)分別從、同時(shí)出發(fā),以1厘米/秒的速度分別沿向點(diǎn)運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD的延長線交于點(diǎn)P,F(xiàn)PAD于點(diǎn)Q.⊙E半徑為,設(shè)運(yùn)動(dòng)時(shí)間為秒。

(1)求直線BC的解析式。

(2)當(dāng)為何值時(shí),?

(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點(diǎn)的坐標(biāo)。如果不相切,說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 

(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,

∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。

(1)求證:△OCD是等邊三角形;

(2)當(dāng)=150°時(shí),試判斷△AOD 的形狀,并說明理由;

(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點(diǎn),逆時(shí)針旋轉(zhuǎn)三角尺.

(1)當(dāng)三角尺的一邊經(jīng)過C點(diǎn)時(shí),此時(shí)三角尺的另一邊和AB邊交于點(diǎn),求此時(shí)直線PM的解析式;

(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點(diǎn)G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點(diǎn)F,若三角形GF的面積為4,求此時(shí)直線PM的解析式;

(3)當(dāng)旋轉(zhuǎn)到三角尺的一邊經(jīng)過點(diǎn)B,另一直角邊的延長線與x軸交于點(diǎn)G,,求此時(shí)三角形GOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,拋物線y=ax2bxcx軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)。點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行。直線y=-xm過點(diǎn)C,交y軸于D點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵點(diǎn)K為線段AB上一動(dòng)點(diǎn),過點(diǎn)Kx軸的垂線與直線CD交于點(diǎn)H,與拋物線交于     點(diǎn)G,求線段HG長度的最大值;
⑶在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年人教版九年級第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,已知拋物線y=x2+3與x軸交于點(diǎn)A、B,與直線y=x+b相交于點(diǎn)B、C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫出直線BC的解析式;
(2)求△ABC的面積;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動(dòng)(不與A、B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,請寫出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動(dòng)多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案