【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點(diǎn)M、N.
(1)如圖①,若△AMN是等邊三角形,則∠BAC= °;
(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2.
(3)如圖③,∠ABC的平分線BP和AC邊的垂直平分線相交于點(diǎn)P,過(guò)點(diǎn)P作PH垂直BA的延長(zhǎng)線于點(diǎn)H.若AB=4,CB=10,求AH的長(zhǎng).
【答案】1200
【解析】
(1)先求出∠AMN=60°,再利用垂直平分線求出∠B=30°,同理求出∠C=30°,最后利用三角形內(nèi)角和定理即可得出結(jié)論;
(2)先判斷出∠B+∠C=45°,進(jìn)而求出∠MAN=90°,即可得出結(jié)論;
(3)先判斷出Rt△APH≌Rt△CPE,進(jìn)而判斷出Rt△BPH≌Rt△BPE,即可得出結(jié)論.
解:(1)如圖①,∵△AMN是等邊三角形,
∴∠AMN=60°,
∵M(jìn)G是AB的垂直平分線,
∴AM=AM,
∴∠B=∠BAM=30°
同理:∠C=30°,
∴∠BAC=180°-∠B-∠C=120°
故答案為120;
(2)如圖①,連接AM、AN
∵∠BAC=135°
∴∠B+∠C=45°,
又∵點(diǎn)M在AB的垂直平分線上
∴AM=BM
∴∠BAM=∠B,
同理AN=CN,∠CAN=∠C
∴∠BAM+∠CAN=45°
∴∠MAN=90°,
∴AM2+AN2=MN2;
∴BM2+CN2=MN2;
(3)如圖②,連接AP、CP,過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E
∵BP平分∠ABC,PH⊥BA,PE⊥BC
∴PH=PE
∵點(diǎn)P在AC的垂直平分線上
∴AP=CP
在Rt△APH和Rt△CPE中
∴Rt△APH≌Rt△CPE
∴AH=CE,
∵BP平分∠ABC,PH⊥BA,PE⊥BC
∴∠HBP=∠CBP,∠BHP=∠BEP=90°
∵BP=BP
∴Rt△BPH≌Rt△BPE
∴BH=BE,
∴BC=BE+CE=BH+CE=AB+2AH
∴AH=(BC-AB)÷2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘海輪在A點(diǎn)時(shí)測(cè)得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達(dá)B處,此時(shí)燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過(guò)程中與燈塔C的最短距離(結(jié)果精確到0.1);
(2)求海輪在B處時(shí)與燈塔C的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明購(gòu)買了一部新手機(jī),到某通訊公司咨詢移動(dòng)電話資費(fèi)情況,準(zhǔn)備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費(fèi)方案:
方案代號(hào) | 月租費(fèi)(元) | 免費(fèi)時(shí)間(分) | 超過(guò)免費(fèi)時(shí)間的通話費(fèi)(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分別寫出方案一、二中,月話費(fèi)(月租費(fèi)與通話費(fèi)的總和)y(單位:元)與通話時(shí)間x(單位:分)的函數(shù)關(guān)系式;
(2)畫出(1)中兩個(gè)函數(shù)的圖象;
(3)若小明月通話時(shí)間為200分鐘左右,他應(yīng)該選擇哪種資費(fèi)方案最省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①如果兩個(gè)三角形全等,那么這兩個(gè)三角形一定成軸對(duì)稱;②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對(duì)應(yīng);③是3的一個(gè)平方根;④兩個(gè)無(wú)理數(shù)的和一定為無(wú)理數(shù);⑤6.9103精確到十分位;⑥ 的平方根是4.其中正確的__________ .(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A.70°
B.35°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,對(duì)角線AC、BD交于點(diǎn)O,過(guò)點(diǎn)O作直線EF分別交線段AD、BC于點(diǎn)E、F.
(1)根據(jù)題意,畫出圖形,并標(biāo)上正確的字母;
(2)求證:DE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( )
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個(gè)結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④S△ABC=4S△ADF . 其中正確的有( )
A.1個(gè)
B.2 個(gè)
C.3 個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com