【題目】為了美化校園環(huán)境,爭(zhēng)創(chuàng)綠色學(xué)校,某縣教育局委托園林公司對(duì)A,B兩校進(jìn)行校園綠化,已知A校有如圖的陰影部分空地需鋪設(shè)草坪,B校有如圖的陰影部分空地需鋪設(shè)草坪,在甲、乙兩地分別有同種草皮3500米和2500米出售,且售價(jià)一樣,若園林公司向甲、乙兩地購(gòu)買(mǎi)草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
路程、運(yùn)費(fèi)單價(jià)表
A校 | B校 | |||
路程千米 | 運(yùn)費(fèi)單價(jià)元 | 路程千米 | 運(yùn)費(fèi)單價(jià)元 | |
甲地 | 20 | 10 | ||
乙地 | 15 | 20 |
注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需的人民幣
求:分別求出圖1、圖2的陰影部分面積;
若園林公司將甲地的草皮全部運(yùn)往A校,請(qǐng)你求出園林公司運(yùn)送草皮去A、B兩校的總運(yùn)費(fèi);
請(qǐng)你給出一種運(yùn)送方案,使得園林公司支付出送草皮的總運(yùn)費(fèi)不超過(guò)15000元.
【答案】(1),;(2)20400元;(3)見(jiàn)解析.
【解析】(1)平移圖形后,利用平行四邊形面積公式計(jì)算即可.
(2)總費(fèi)用=園林公司將甲地3500m2的草皮全部運(yùn)往A校的費(fèi)用+園林公司將乙地100m2的草皮全部運(yùn)往A校的費(fèi)用+園林公司將乙地2400m2的草皮全部運(yùn)往B校的費(fèi)用.
(3)設(shè)甲地草皮運(yùn)送x m2去A校,有(3500﹣x)m2運(yùn)往B校,乙地草皮(3600﹣x)m2運(yùn)往A校,(x﹣1100)m2草皮運(yùn)往B校.根據(jù)題意列出不等式即可解決問(wèn)題.
(1)圖1陰影面積=90×40=3600m2,圖2陰影面積=40×60=2400m2.
(2)總運(yùn)費(fèi)=3500×20×0.15+100×15×0.2+2400×20×0.2=20400元.
(3)設(shè)甲地草皮運(yùn)送x m2去A校,有(3500﹣x)m2運(yùn)往B校,乙地草皮(3600﹣x)m2運(yùn)往A校,(x﹣1100)m2草皮運(yùn)往B校.依題意得:
20×0.15x+(3500﹣x)×10×0.15+(3600﹣x)×15×0.20+(x﹣1100)×20×0.20≤1500,且x﹣1100≥0,
解得:1100≤x≤1340.
只要所設(shè)計(jì)的方案中運(yùn)往A校的草皮在1100m2~1340m2之間都可.如甲地的草皮運(yùn)往A校1100m2,運(yùn)往B校2400m2,乙地草皮運(yùn)往A校2500m2,總運(yùn)費(fèi)14400元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)(1)班所有學(xué)生參加2016年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)、九年級(jí)(1)班參加體育測(cè)試的學(xué)生有 人;
(2)、將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)、在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是 ;
(4)、若該校九年級(jí)學(xué)生共有850人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E、F,連接AF,BE相交于點(diǎn)P,若AE=CF,則∠APB=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過(guò)A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過(guò)點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過(guò)點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,過(guò)點(diǎn)E作EH⊥ED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過(guò)AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教師節(jié)要到了,為了表示對(duì)老師的敬意,小明做了兩張大小不同的正方形壁畫(huà)準(zhǔn)備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫(huà)的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2 m長(zhǎng)的金彩帶,請(qǐng)你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買(mǎi)多長(zhǎng)的金彩帶?(≈1.414,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下條件不能判別四邊形ABCD是矩形的是( 。
A. AB=CD,AD=BC,∠A=90° B. OA=OB=OC=OD
C. AB=CD,AB∥CD,AC=BD D. AB=CD,AB∥CD,OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購(gòu)買(mǎi)若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買(mǎi)3個(gè)足球和2個(gè)籃球共需310元.購(gòu)買(mǎi)2個(gè)足球和5個(gè)籃球共需500元.
(1)購(gòu)買(mǎi)一個(gè)足球、一個(gè)籃球各需多少元?
(2)實(shí)驗(yàn)中學(xué)實(shí)際需要一次性購(gòu)買(mǎi)足球和籃球共96個(gè).要求購(gòu)買(mǎi)足球和籃球的總費(fèi)用不超過(guò)5800元,這所中學(xué)最多可以購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知單位長(zhǎng)度為1的方格中有三角形ABC.
(1)請(qǐng)畫(huà)出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;
(2)請(qǐng)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(在圖中畫(huà)出),然后寫(xiě)出點(diǎn)B,B′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com