【題目】已知邊長為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______

【答案】(4033,

【解析】

根據(jù)正六邊形的特點(diǎn),每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定出點(diǎn)B的位置,經(jīng)過第2017次翻轉(zhuǎn)之后,點(diǎn)B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點(diǎn)B離原點(diǎn)的距離為4032,所以經(jīng)過2017次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是(4032,0),經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)BB′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=由此即可求得經(jīng)過2018次翻轉(zhuǎn)之后點(diǎn)B的坐標(biāo).

然后求出翻轉(zhuǎn)前進(jìn)的距離,過點(diǎn)CCG⊥xG,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點(diǎn)C的坐標(biāo)即可.

設(shè)2018次翻轉(zhuǎn)之后,在B′點(diǎn)位置,

∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,

∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組,

2018÷6=3362,

∴經(jīng)過2016次翻轉(zhuǎn)為第336個(gè)循環(huán),點(diǎn)B在初始狀態(tài)時(shí)的位置,

而第2017次翻轉(zhuǎn)之后,點(diǎn)B的位置不變,仍在x軸上,

A(﹣2,0),

AB=2,

∴點(diǎn)B離原點(diǎn)的距離=2×2016=4032,

∴經(jīng)過2017次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是(4032,0),

經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)BB′位置,則△BB′C為等邊三角形,

此時(shí)BN=NC=1,B′N=,

故經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是:(4033,).

故答案為:(4033,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點(diǎn)C、A(1,1)、B(3,1).動點(diǎn)PO點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度移動.過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動的時(shí)間為t秒(0<t<4),OPQ與直角梯形OABC重疊部分的面積為S.

(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;

(2)求St的函數(shù)關(guān)系式;

(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)OQ在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣1.

x

﹣1

0

1

2

3

y

   

   

   

   

   

(1)請?jiān)诒韮?nèi)的空格中填入適當(dāng)?shù)臄?shù);

(2)根據(jù)列表,請?jiān)谒o的平面直角坐標(biāo)系中畫出y=x2﹣2x﹣1的圖象;

(3)當(dāng)x在什么范圍內(nèi)時(shí),yx增大而減小;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點(diǎn),則y1y2;③2ab0;④0,其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)C關(guān)于拋物線對稱軸對稱的點(diǎn)為D.

(1)求點(diǎn)D的坐標(biāo)及直線AD的解析式;

(2)如圖1,連接CD、AD、BD,點(diǎn)M為線段CD上一動點(diǎn),過MMNBD交線段ADN點(diǎn),點(diǎn)Py軸上的動點(diǎn),當(dāng)△CMN的面積最大時(shí),求△MPN的周長取得最小值時(shí)點(diǎn)P的坐標(biāo);

(3)如圖2,線段AE在第一象限內(nèi)交BD于點(diǎn)E,其中tanEAB=,將拋物線向右水平移動,點(diǎn)A平移后的對應(yīng)點(diǎn)為點(diǎn)G;將△ABD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點(diǎn)為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個(gè)三角形,是否存在點(diǎn)G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAOB,ABx軸于C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)在x軸上存在一點(diǎn)P,使SAOP= SAOB, 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并回答問題.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個(gè)結(jié)論就是著名的勾股定理.請利用這個(gè)結(jié)論,完成下面活動:

一個(gè)直角三角形的兩條直角邊分別為,那么這個(gè)直角三角形斜邊長為____;

如圖①,,求的長度;

如圖②,點(diǎn)在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)點(diǎn)(保留痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)將線段分成兩部分,如果,那么稱點(diǎn)為線段的黃金分割點(diǎn).

某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),類似地給出黃金分割線的定義:直線將一個(gè)面積為的圖形分成兩部分,這兩部分的面積分別為,如果,那么稱直線為該圖形的黃金分割線.(如圖

問題.試在圖的梯形中畫出至少五條黃金分割線,并說明理由.

類似黃金分割線黃金分割面定義:截面將一個(gè)體積為的圖形分成體積為V1

的兩個(gè)圖形,且,則稱直線為該圖形的黃金分割面.

問題:如圖,長方體中,是線段上的黃金分割點(diǎn),證明經(jīng)過點(diǎn)且平行于平面的截面是長方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.問水的深度與這根蘆葦?shù)拈L度分別是多少?

查看答案和解析>>

同步練習(xí)冊答案