如圖,n+1個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1面積為S1,△B3D2C2面積為S2,…,△Bn+1DnCn面積為Sn,則Sn等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:n+1個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一直線上,則B2,B3,…Bn在一條直線上,作出直線B1B2.根據(jù)相似三角形的性質(zhì),即可求得BnDn的長(zhǎng),Sn與△Bn+1DnCn面積的比等于,據(jù)此即可求解.
解答:
解:n+1個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一直線上,則B2,B3,…Bn在一條直線上,作出直線B1B2
∵Bn Cn-1∥AB1
==
∴BnDn=•AB1=
則DnCn=2-BnDn=2-=
△BnCnBn+1是邊長(zhǎng)是2的等邊三角形,因而面積是:
△Bn+1DnCn面積為Sn===
故選D.
點(diǎn)評(píng):本題主要考查了相似三角形的性質(zhì),正確作出輔助線,理解Sn與△Bn+1DnCn面積的比等于是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是由36個(gè)邊長(zhǎng)為1的小正方形拼成的,連接小正方形中的點(diǎn)A、B、C、D、E、F得線段AB、BC、CD、EF,這些線段中長(zhǎng)度是有理數(shù)的是哪些?長(zhǎng)度是無(wú)理數(shù)的是哪些?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,n+1個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,通過(guò)計(jì)算S1,S2,…,的值,歸納出Sn的表達(dá)式(用含n的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南昌)如圖,有兩個(gè)邊長(zhǎng)為2的正方形,將其中一個(gè)正方形沿對(duì)角線剪開成兩個(gè)全等的等腰直角三角形,用這三個(gè)圖片分別在網(wǎng)格備用圖的基礎(chǔ)上(只要再補(bǔ)出兩個(gè)等腰直角三角形即可),分別拼出一個(gè)三角形、一個(gè)四邊形、一個(gè)五邊形、一個(gè)六邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有兩個(gè)邊長(zhǎng)為2的等邊三角形,將其中一個(gè)等腰三角形沿一邊的高剪開成兩個(gè)全等的直角三角形,用這三個(gè)圖分別在備用圖的基礎(chǔ)上,拼出一個(gè)三角形,一個(gè)矩形,一個(gè)菱形,一個(gè)等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC,AB=3,BC=
5
,AC=2
2
,如圖是由81個(gè)邊長(zhǎng)為1的小正方形組成的9×9的正方形網(wǎng)格,將頂點(diǎn)在這些小正方形頂點(diǎn)的三角形稱為格點(diǎn)三角形.
(1)請(qǐng)你在所給的網(wǎng)格中畫出一格點(diǎn)△A1B1C1與△ABC全等.
(2)畫出格點(diǎn)△A2B2C2與△A1B1C1全等,且△A2B2C2的三邊與△A1B1C1的三邊對(duì)應(yīng)垂直.
(3)直接寫出所給的網(wǎng)格中與△A1B1C1相似,與△A1B1C1的三邊對(duì)應(yīng)垂直的最大網(wǎng)格三角形的面積S=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案