已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按圖放置,使點(diǎn)F在BC上,取DF的中點(diǎn)G,連接EG,CG.試探究EG,CG的位置關(guān)系與數(shù)量關(guān)系并證明.

解:EG⊥CG且EG=CG;
證明:連接BD,則∠DBC=45°,
又∵BE=EF∠BEF=90°,
∴∠EBF=45°=∠DBC,
∴D、E、B共線,
∴∠DEF=90°,
∵DG=FG,
∴EG=DF,
同理CG=DF,
∴EG=CG,
∵EG=GD,
∴∠3=∠5,
∴∠1=2∠3,
同理∠2=2∠4,
∴∠EGC=2(∠3+∠4)=90°,
∴EG⊥CG.
分析:根據(jù)正方形的性質(zhì)和題目的意思作輔助線,延長(zhǎng)BE一定過(guò)B點(diǎn),再由直角三角形中斜邊上的中線等于斜邊的一半,求解即可.
點(diǎn)評(píng):本題考點(diǎn)是:正方形的性質(zhì)、直角三角形的性質(zhì)、外角的性質(zhì)以及輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
(1)發(fā)現(xiàn)與證明:
發(fā)現(xiàn):①當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí)(如圖1),△ABE與△ADG的面積關(guān)系是:
 

②當(dāng)E點(diǎn)旋轉(zhuǎn)到CB的延長(zhǎng)線上時(shí)(如圖2),△ABE與△ADG的面積關(guān)系是:
 

證明:請(qǐng)你選擇上述兩個(gè)發(fā)現(xiàn)中的任意一個(gè)加以證明,選擇①、②證明的滿(mǎn)分分別為4分和6分.(注意:證明前要注明選擇了哪一個(gè)發(fā)現(xiàn))
(2)引申與運(yùn)用:
引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí)(如圖3),△ABE與△ADG的面積關(guān)系是:
 

運(yùn)用:已知△ABC,AB=5cm,BC=3cm,分別以AB、BC、CA為邊向外作正方形(如圖4),則圖中陰影部分的面積和的最大值是
 
cm2
證明:我選擇
 
進(jìn)行證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上.
(1)如圖1,連接DF、BF,證明:BF=DF;
(2)若將正方形AEFG繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),在旋轉(zhuǎn)的過(guò)程中線段DF與BF的長(zhǎng)還相等嗎?若相等,請(qǐng)證明;若相不等,連接DG,在旋轉(zhuǎn)的過(guò)程中,你能否找到一條線段的長(zhǎng)與線段DG的長(zhǎng)始終相等.并以圖2為例說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
精英家教網(wǎng)
(1)發(fā)現(xiàn):當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí)(如圖1),△ABE與△ADG的面積關(guān)系是:
 

(2)引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí)(如圖2),△ABE與△ADG的面積關(guān)系是:
 
.并證明你的結(jié)論.
(3)運(yùn)用:已知△ABC,AB=5cm,BC=3cm,分別以AB、BC、CA為邊向外作正方形(如圖3),則圖中陰影部分的面積和的最大值是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD和EFCG,點(diǎn)E、F、G分別在線段AC、BC、CD上,正方形ABCD的邊長(zhǎng)為6.
(1)如果正方形EFCG的邊長(zhǎng)為4,求證:△ABE∽△CAG;
(2)正方形EFCG的邊長(zhǎng)為多少時(shí),tan∠ABE×cot∠CAG=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).

(1)如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí),△ABE與△ADG面積之間的關(guān)系為:S△ABE
=
=
S△ADG(填“<”“=”“>”);
(2)如圖,當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí),S△ABE
=
=
S△ADG(填“<”“=”“>”),并說(shuō)明理由;
(3)如圖,四邊形ABCD、四邊形AEFG和四邊形DGMN均為正方形,則S△ABE、S△ADG、S△CDN和S△GMF的關(guān)系是
相等
相等

(4)某小區(qū)中有一塊空地,要在其中建三個(gè)正方形健身場(chǎng)所,其余空地(圖中陰影部分)修成草坪,其中一個(gè)正方形的邊長(zhǎng)為6m.另外兩個(gè)正方形的邊長(zhǎng)之和為10m,則草坪的最大面積為
48
48
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案