【題目】有一個(gè)著名的希波克拉蒂月牙問題:如圖1,以直角三角形的各邊為直徑分別向上作半圓,則直角三角形的面積可表示成兩個(gè)月牙形的面積之和,現(xiàn)將三個(gè)半圓紙片沿直角三角形的各邊向下翻折得到圖2,把較小的兩張半圓紙片的重疊部分面積記為S1,大半圓紙片未被覆蓋部分的面積記為S2,則直角三角形的面積可表示成( )
A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1S2
【答案】B
【解析】
設(shè)以Rt△ABC的斜邊為直徑的半圓為大半圓,以AC為直徑的半圓為中半圓,以BC為直徑的半圓為小半圓,根據(jù)圓的面積公式和勾股定理進(jìn)行解答即可.
解:設(shè)以Rt△ABC的斜邊為直徑的半圓為大半圓,以AC為直徑的半圓為中半圓,以BC為直徑的半圓為小半圓,
∵S小半圓=π×=BC2,S中半圓=AC2,S大半圓=AB2,
∴S大半圓﹣S中半圓﹣S小半圓=(AB2﹣BC2﹣AC2)=0,
∵S△ABC+S大半圓﹣S中半圓﹣S小半圓+S1=S2,
∴S△ABC+S1=S2,
∴S△ABC=S2﹣S1,
∴直角三角形的面積可表示成S2﹣S1,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款新產(chǎn)品,通過市場(chǎng)調(diào)研后,按三種顏色受歡迎的程度分別對(duì)A顏色、B顏色、C顏色的產(chǎn)品在成本的基礎(chǔ)上分別加價(jià)40%,50%,60%出售(三種顏色產(chǎn)品的成本一樣),經(jīng)過一個(gè)季度的經(jīng)營后,發(fā)現(xiàn)C顏色產(chǎn)品的銷量占總銷量的40%,三種顏色產(chǎn)品的總利潤率為51.5%,第二個(gè)季度,公司決定對(duì)A產(chǎn)品進(jìn)行升級(jí),升級(jí)后A產(chǎn)品的成本提高了25%,其銷量提高了60%,利潤率為原來的兩倍;B產(chǎn)品的銷量提高到與升級(jí)后的A產(chǎn)品的銷量一樣,C產(chǎn)品的銷量比第一季度提高了50%,則第二個(gè)季度的總利潤率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甘肅省注重建設(shè)“書香校園”.為了了解學(xué)生們的課外閱讀情況,張老師調(diào)查了全班50名學(xué)生在一周內(nèi)的課外閱讀時(shí)間,并將統(tǒng)計(jì)的時(shí)間(單位:小時(shí))分成5組:A.0.5≤x<1;B.1≤x<1.5;C.1.5≤x<2;D.2≤x<2.5;E.2.5≤x<3;并制成兩幅不完整的統(tǒng)計(jì)圖表如下:
組別 | 人數(shù) | 占總數(shù)的百分比 |
A | 3 |
|
B |
|
|
C |
| 40% |
D | 9 |
|
E | 1 |
|
總計(jì) | 50 | 100% |
請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:
(1)這次調(diào)查中學(xué)生課外閱讀時(shí)間的中位數(shù)所在的組是 ;
(2)扇形統(tǒng)計(jì)圖中,B組的圓心角為 ,并補(bǔ)全統(tǒng)計(jì)圖表;
(3)請(qǐng)根據(jù)以上調(diào)查情況估計(jì):全校1500名學(xué)生中有多少名學(xué)生每周閱讀時(shí)間不低于2小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng),過作,交于點(diǎn),以為鄰邊作平行四邊形,同時(shí)以為邊向下作正方形,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)點(diǎn)到直線的距離______________;(用含的代數(shù)式表示)
(2)當(dāng)點(diǎn)落在落在上時(shí),求的值;
(3)設(shè)平行四邊形與正方形重疊部分的面積為,求與之間的函數(shù)關(guān)系式,并求出的最大值.
(4)設(shè),當(dāng)時(shí),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王媽媽在蓮花商場(chǎng)里購買單價(jià)總和是90元的商品甲、乙、丙共兩次,其中甲的單價(jià)是20元,乙的單價(jià)是40元,甲商品第一次購買的數(shù)量是第二次購買數(shù)量的兩倍,乙商品第一次購買的數(shù)量與丙商品第二次購買的數(shù)量相等,兩次購買商品甲、乙、丙的數(shù)量和總費(fèi)用如下表:
購買商品甲的 數(shù)量(個(gè)) | 購買商品乙的 數(shù)量(個(gè)) | 購買商品丙的 數(shù)量(個(gè)) | 購買總費(fèi)用(元) | |
第一次購物 | 4 | 440 | ||
第二次購物 | 7 | 490 |
(1)求兩次購買甲、乙、丙三種商品的總數(shù)量分別是多少?
(2)由于蓮花商場(chǎng)物美價(jià)廉,王媽媽打算第三次前往購買商品甲、乙、丙,設(shè)三種商品的數(shù)量總和為a個(gè),其中購買乙商品數(shù)量是甲商品數(shù)量的3倍,購買總費(fèi)用為1 280元,求a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于點(diǎn)(a,2).
(1)求a和k的值.
(2)若點(diǎn)P(m,n)在反比例函數(shù)圖象上,且點(diǎn)P到y軸的距離小于1,請(qǐng)根據(jù)圖象直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形紙片中,,cm,cm,點(diǎn)分別在邊上,點(diǎn)是邊的中點(diǎn).現(xiàn)將該紙片沿折疊,使點(diǎn)與點(diǎn)重合,則______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),經(jīng)過點(diǎn)的直線與該拋物線交于另一點(diǎn),并且直線軸,點(diǎn)為該拋物線上一個(gè)動(dòng)點(diǎn),點(diǎn)為直線上一個(gè)動(dòng)點(diǎn).
(1)當(dāng),且時(shí),連接,,求證:四邊形是平行四邊形
(2)當(dāng)時(shí),連接,線段與線段交于點(diǎn),,且,連接,求線段的長(zhǎng);
(3)連接,,試探究:是否存在點(diǎn),使得與互為余角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com