如圖,拋物線與x軸交于A、C兩點,與y軸交于B點.
(1)求△AOB的外接圓的面積;
(2)若動點P從點A出發(fā),以每秒1個單位沿射線AC方向運動;同時,點Q從點B出發(fā),以每秒0.5個單位沿射線BA方向運動,當點P到達點C處時,兩點同時停止運動.問當t為何值時,以A、P、Q為頂點的三角形與△OAB相似?
(3)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
問:是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(1)25π;(2)t=以A、P、Q為頂點的三角形與△OAB相似;(3)不存在這樣的點M,使得四邊形OMNB恰為平行四邊形,理由見解析.
解析試題分析:(1)先求出A,B坐標,則△AOB的外接圓的半徑為AB,根據(jù)圓的面積公式求解即可;
(2)根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求解即可;
(3)若四邊形OMNB為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出MN=OB=8,據(jù)此列出方程(x-8)-(
x2-
x-8)=8,由判別式△<0即可判斷出不存在這樣的點M,使得四邊形OMNB恰為平行四邊形.
試題解析:(1)∵,
∴當y=0時,=0,解得x=6或﹣8,
∴A(6,0),B(0,-8)
∴OA=6,OB=8,∴AB=10
∴S=π·(5)2=25π.
(2)AP=t,AQ=10-0.5t,易求AC=8,∴0≤t≤8
若△APQ∽△AOB,則.∴t=
.
若△AQP∽△AOB,則.∴t=
>8(舍去,).
∴當t=時,以A、P、Q為頂點的三角形與△OAB相似.
(3)直線AB的函數(shù)關(guān)系式為 .
∵MN∥y軸
∴設(shè)點M的橫坐標為x,則M(x,x-8),N(x,
x2-
x-8).
若四邊形OMNB為平行四邊形,則MN=OB=8
∴(x-8)-(
x2-
x-8)=8
即x2-6x+12=0
∵△<0,∴此方程無實數(shù)根,
∴不存在這樣的點M,使得四邊形OMNB恰為平行四邊形.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,頂點為(4,1)的拋物線交軸于點
,交
軸于
,
兩點(點
在點
的左側(cè)),已知
點坐標為(6,0).
(1)求此拋物線的解析式;
(2)聯(lián)結(jié)AB,過點作線段
的垂線交拋物線于點
,如果以點
為圓心的圓與拋物線的對稱軸
相切,先補全圖形,再判斷直線
與⊙
的位置關(guān)系并加以證明;
(3)已知點是拋物線上的一個動點,且位于
,
兩點之間.問:當點
運動到什么位置時,
的面積最大?求出
的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商人如果將進貨價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價,減少進貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價定為多少元時,才能使每天所賺的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線y=x²-4x+3.
(1)該拋物線的對稱軸是 ,頂點坐標 ;
(2)將該拋物線向上平移2個單位長度,再向左平移3個單位長度得到新的二次函數(shù)圖像,請寫出相應(yīng)的解析式,并用列表,描點,連線的方法畫出新二次函數(shù)的圖像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖所示,在平面直角坐標系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點O順時針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點F.
(1)若拋物線過點A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點M是第三象限內(nèi)拋物線上的一動點,點M在何處時△AMC的面積最大?最大面積是多少?求出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,8),AB為半圓的直徑,半圓的圓心M的坐標為(1,0),半圓半徑為3.
(1)請你直接寫出“蛋圓”拋物線部分的解析式 ,自變量的取值范圍是 ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標;
(3)求經(jīng)過點D的“蛋圓”切線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,在平面直角坐標系中,拋物線
過點A(6,0)和點B(3,
).
(1)求拋物線的解析式;
(2)將拋物線沿x軸翻折得拋物線
,求拋物線
的解析式;
(3)在(2)的條件下,拋物線上是否存在點M,使
與
相似?如果存在,求出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,用長為20米的籬笆恰好圍成一個扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為
平方米.(注:
的近似值取3)
(1)求出與
的函數(shù)關(guān)系式,并寫出自變量
的取值范圍;
(2)當半徑為何值時,扇形花壇的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com