(2006•長春)如圖,P為正比例函數(shù)y=x圖象上的一個動點,⊙P的半徑為3,設點P的坐標為(x,y).
(1)求⊙P與直線x=2相切時點P的坐標.
(2)請直接寫出⊙P與直線x=2相交、相離時x的取值范圍.

【答案】分析:(1)根據(jù)直線和圓相切應滿足圓心到直線的距離等于半徑,首先求得點P的橫坐標,再根據(jù)直線的解析式求得點P的縱坐標.
(2)根據(jù)(1)的結論,即可分析出相離和相交時x的取值范圍.
解答:解:(1)過P作直線x=2的垂線,垂足為A;
當點P在直線x=2右側時,AP=x-2=3,得x=5;
∴P(5,);
當點P在直線x=2左側時,PA=2-x=3,得x=-1,
∴P(-1,-),
∴當⊙P與直線x=2相切時,點P的坐標為(5,)或(-1,-);

(2)當-1<x<5時,⊙P與直線x=2相交
當x<-1或x>5時,⊙P與直線x=2相離.
點評:掌握直線和圓的不同位置關系應滿足的數(shù)量關系.根據(jù)數(shù)量關系正確求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2006•長春)如圖,將△AOB繞點O逆時針旋轉90°,得到△A′OB′.若點A的坐標為(a,b),則點A'的坐標為
(-b,a)
(-b,a)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•長春)如圖,P為拋物線y=x2-x+上對稱軸右側的一點,且點P在x軸上方,過點P作PA垂直x軸于點A,PB垂直y軸于點B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省紹興市上虞市上浦鎮(zhèn)中學九年級數(shù)學試卷(解析版) 題型:解答題

(2006•長春)如圖1,正方形ABCD的頂點A,B的坐標分別為(0,10),(8,4),頂點C,D在第一象限.點P從點A出發(fā),沿正方形按逆時針方向運動,同時,點Q從點E(4,0)出發(fā),沿x軸正方向以相同速度運動.當點P到達點C時,P,Q兩點同時停止運動.設運動時間為t(s).
(1)求正方形ABCD的邊長;
(2)當點P在AB邊上運動時,△OPQ的面積S(平方單位)與時間t(s)之間的函數(shù)圖象為拋物線的一部分(如圖2所示),求P,Q兩點的運動速度;
(3)求(2)中面積S(平方單位)與時間t(s)的函數(shù)解析式及面積S取最大值時點P的坐標;
(4)若點P,Q保持(2)中的速度不變,則點P沿著AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減。旤cP沿著這兩邊運動時,能使∠OPQ=90°嗎?若能,直接寫出這樣的點P的個數(shù);若不能,直接寫不能.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省寧波市十九中中考數(shù)學模擬考試四校聯(lián)考試卷(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設它與△OAB重疊部分的面積為S.
(1)求點A的坐標.
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經過點A后繼續(xù)按原方向、原速度運動,當正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(夾灶初中 邵林明)(解析版) 題型:解答題

(2006•長春)如圖1,正方形ABCD的頂點A,B的坐標分別為(0,10),(8,4),頂點C,D在第一象限.點P從點A出發(fā),沿正方形按逆時針方向運動,同時,點Q從點E(4,0)出發(fā),沿x軸正方向以相同速度運動.當點P到達點C時,P,Q兩點同時停止運動.設運動時間為t(s).
(1)求正方形ABCD的邊長;
(2)當點P在AB邊上運動時,△OPQ的面積S(平方單位)與時間t(s)之間的函數(shù)圖象為拋物線的一部分(如圖2所示),求P,Q兩點的運動速度;
(3)求(2)中面積S(平方單位)與時間t(s)的函數(shù)解析式及面積S取最大值時點P的坐標;
(4)若點P,Q保持(2)中的速度不變,則點P沿著AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減。旤cP沿著這兩邊運動時,能使∠OPQ=90°嗎?若能,直接寫出這樣的點P的個數(shù);若不能,直接寫不能.

查看答案和解析>>

同步練習冊答案