如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí)?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時(shí)刻t,使線(xiàn)段PQ恰好把△ABC的周長(zhǎng)和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。

解析試題分析:(1)當(dāng)PQ∥BC時(shí),我們可得出三角形APQ和三角形ABC相似,那么可得出關(guān)于AP,AB,AQ,AC的比例關(guān)系,我們觀察這四條線(xiàn)段,已知的有AC,根據(jù)P,Q的速度,可以用時(shí)間t表示出AQ,BP的長(zhǎng),而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關(guān)系式中,即可得出t的值.
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時(shí)間t表示出來(lái).關(guān)鍵是高,可以用AP和∠A的正弦值來(lái)求.AP的長(zhǎng)可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.
(3)如果將三角形ABC的周長(zhǎng)和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長(zhǎng),那么可以求出此時(shí)t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時(shí)面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時(shí)刻.
(4)過(guò)點(diǎn)P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個(gè)矩形,解題思路:通過(guò)三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長(zhǎng),也就表示出了MC的長(zhǎng),要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線(xiàn)合一的特點(diǎn),QM=MC,這樣有用t表示出的AQ,QM,MC三條線(xiàn)段和AC的長(zhǎng),就可以根據(jù)AC=AQ+QM+MC來(lái)求出t的值.求出了t就可以得出QM,CM和PM的長(zhǎng),也就能求出菱形的邊長(zhǎng)了.
試題解析:(1) 連接PQ,

時(shí),PQ//BC,即,
∴ t=
(2) 過(guò)P作PD⊥AC于點(diǎn)D,則有,

∴ PD=
∴  y==(0<t<2)
(3) 若平分周長(zhǎng)則有:
AP+AQ=(AB+AC+BC),
即:5-t+2t=6,
∴ t=1
當(dāng)t=1時(shí),y=3.4;而三角形ABC的面積為6,顯然不存在。
過(guò)P作PD⊥AC于點(diǎn)D,若QD=CD,則PQ=PC,四邊形PQP'C就為菱形。

同(2)方法可求AD=,所以:
-2t=4-;
解之得:t=。
即t=時(shí),四邊形PQP'C為菱形。
考點(diǎn): 相似形綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題

(1)如圖1,在△ABC中,點(diǎn)D、E、Q分別在AB、AC、BC上,且DE//BC,AQ交DE于點(diǎn)P,求證:

(2)如圖,△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫(xiě)出MN的長(zhǎng);
②如圖3,求證:MN=DM·EN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E為BC邊的中點(diǎn),連接DE.
(1)求證:DE與⊙O 相切.
(2)若tanC=,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D在邊AC上,點(diǎn)E,F(xiàn)在邊AB上,點(diǎn)G在邊BC上.

⑴求證:△ADE≌△BGF;
⑵若正方形DEFG的面積為16,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B坐標(biāo)分別為(4,2)、(0,2),線(xiàn)段CD在于x軸上,CD=,點(diǎn)C從原點(diǎn)出發(fā)沿x軸正方向以每秒1個(gè)單位長(zhǎng)度向右平移,點(diǎn)D隨著點(diǎn)C同時(shí)同速同方向運(yùn)動(dòng),過(guò)點(diǎn)D作x軸的垂線(xiàn)交線(xiàn)段AB于點(diǎn)E、交OA于點(diǎn)G,連結(jié)CE交OA于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)E點(diǎn)到達(dá)A點(diǎn)時(shí),停止所有運(yùn)動(dòng).

(1)求線(xiàn)段CE的長(zhǎng);
(2)記S為RtΔCDE與ΔABO的重疊部分面積,試寫(xiě)出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍;
(3)連結(jié)DF,
①當(dāng)t取何值時(shí),有?
②直接寫(xiě)出ΔCDF的外接圓與OA相切時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且EF∥BD,AE、AF分別交BD于點(diǎn)G和點(diǎn)H,BD=12,EF=8。求:(1)的值。(2)線(xiàn)段GH的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,上一點(diǎn),,,分別交于點(diǎn),∠1=∠2,探索線(xiàn)段之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,小麗在觀察某建筑物

(1)請(qǐng)你根據(jù)小亮在陽(yáng)光下的投影,畫(huà)出建筑物在陽(yáng)光下的投影.
(2)已知小麗的身高為,在同一時(shí)刻測(cè)得小麗和建筑物的投影長(zhǎng)分別為,求建筑物的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,Rt△ABC中,CD是斜邊AB上的高.求證:AC2=AD·AB

查看答案和解析>>

同步練習(xí)冊(cè)答案