如圖,AB,BC,CD分別與⊙O相切于點E,F(xiàn),G,且AB∥CD.OB與EF相交于點M,OC與FG相交于點N,連接MN.
(1)求證:OB⊥OC;
(2)若OB=6,OC=8,求MN的長.

【答案】分析:(1)要證明利OB⊥OC,即轉化為證明∠BOC=90°,即可,利用切線長定理和平行線的性質:同旁內(nèi)角互補即可證明;
(2)連接OF,首先證明四邊形ONFM是矩形,利用矩形的對角線相等可得:OF=MN,所以求MN的長,即求出OF的長即可.
解答:(1)證明:∵BA,BC為⊙O的切線,
∴BO平分∠ABC,
同理CO平分∠BCD,
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴∠OBC+∠BCO=90°,
∴∠BOC=90°,
即OB⊥OC;

(2)連接OF,
∵BA,BC為⊙O的切線,
∴BE=BF,BO平分∠ABC,
∴BM⊥EF,
即∠OMF=90°,
同理:∠ONF=90°,
∴四邊形ONFM是矩形,
∴MN=OF,
在Rt△OBC中,OB=6,OC=8,BC2=OB2+OC2,
∴BC=10,
∵BC切圓于點F,
∴OF⊥BC,
∴△OFC∽△BOC,
=,
∴OF=4.8,
∴MN=4.8.
點評:本題考查了切線長定理、平行線的性質以及矩形的判定和性質、勾股定理的運用和相似三角形的判定和性質,難度較大,綜合性較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB,BC是⊙O的兩條弦,AB垂直平分半徑OD,∠ABC=75°,BC=4
2
cm,則OC的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB,BC分別是⊙O的直徑和弦,點D為
BC
上一點,弦DE交⊙O于點E,交AB于點F,交BC于點G,過點C的切線交ED的延長線于H,且HC=HG,連接BH,交⊙O于點M,連接MD,ME.
求證:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,BO=6cm,CO=8cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判斷△OBC的形狀,并證明你的結論;
(2)求BC的長;
(3)求⊙O的半徑OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD,連接OB、OC,延長CO交⊙O于點M,精英家教網(wǎng)過點M作MN∥OB交CD于N,OB=6cm,OC=8cm.
(1)求∠BOC的度數(shù)及⊙O的半徑.
(2)請證明MN是⊙O的切線,并求MN的長.

查看答案和解析>>

同步練習冊答案