【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內.求:

(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)

【答案】
(1)

解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.

在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,

∴BD=PDtan∠BPD=PDtan26.6°;

在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,

∴CD=PDtan∠CPD=PDtan31°;

∵CD﹣BD=BC,

∴PDtan31°﹣PDtan26.6°=40,

∴0.60PD﹣0.50PD=40,

解得PD=400(米),

∴P到OC的距離為400米


(2)

解:在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),

∵OB=240米,

∴PE=OD=OB﹣BD=40米,

∵OE=PD=400米,

∴AE=OE﹣OA=400﹣300=100(米),

∴tanα= = =0.4,

∴坡度為0.4


【解析】(1)過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根據CD﹣BD=BC,列出方程,求出PD=400即可求得點P到OC的距離;(2)利用求得的線段PD的長求出PE=40,AE=100,然后在△APE中利用三角函數(shù)的定義即可求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在長方形ABCDAB=12 cm,BC=6 cm.P沿AB邊從點A開始向點B2 cm/s的速度移動;點Q沿DA邊從點D開始向點A1 cm/s的速度移動.

設點PQ同時出發(fā)t(s)表示移動的時間.

(發(fā)現(xiàn)) DQ________cm,AP________cm.(用含t的代數(shù)式表示)

(拓展)(1)如圖①t________s,線段AQ與線段AP相等?

(2)如圖②,PQ分別到達B,A后繼續(xù)運動,P到達點C后都停止運動.

t為何值時,AQCP?

(探究)若點PQ分別到達點B,A后繼續(xù)沿著ABCDA的方向運動,當點P與點Q第一次相遇時,請直接寫出相遇點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O為直線AB上一點,OD平分∠AOC,∠DOE=90°.

(1)∠AOD的余角是 ______ ,∠COD的余角是 ______

(2)OE是∠BOC的平分線嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是生活中常見的月歷的示意圖請結合圖示回答下列問題.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(1)如圖是另一個月的月歷,a表示該月中某一天,b,c,d是該月中其他3,b,c,d分別與a的關系:b________;c________;d________(用含a的代數(shù)式填空).

(2)用一個長方形框圈出月歷中的三個數(shù)( 圖中的陰影),若這三個數(shù)之和等于51,則這三個數(shù)分別是多少?

(3)這樣圈出的三個數(shù)的和可能是64嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內將ABC經過一次平移后得到A′B′C′,圖中標出了點D的對應點D′.

(1)根據特征畫出平移后的A′B′C′

(2)利用網格的特征,畫出AC邊上的高BE并標出畫法過程中的特征點;

(3)A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD中,點E、F在對角線AC上,且AE=CF。求證:四邊形BEDF是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,AC=8cmCB=6cm,點M、N分別是AC、BC的中點.

1)求線段MN的長;

2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;

3)若C在線段AB的延長線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABCAD⊥BCCE⊥AB,垂足分別為D、EAD、CE交于點H,已知EH=EB=3,AE=4,則CH的長是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案