【題目】在矩形ABCD中,GAD上一點(diǎn),連接BG,CG,作CEBG于點(diǎn)E,連接EDGC于點(diǎn)F

1)如圖1,若點(diǎn)GAD的中點(diǎn),則線段BGCG有何數(shù)量關(guān)系?請說理由.

2)如圖2,若點(diǎn)E恰好為BG的中點(diǎn),且AB=3AG=k0k3),求的值(用含k的代數(shù)式表示);

3)在(2)有條件下,若M、N分別為GC、EC上的任意兩點(diǎn),連接NF、NM,當(dāng)k=時(shí),求NF+NM的最小值.

【答案】1GB=GC.理由見解析;(2=;(3NF+NM的最小值是

【解析】

1)結(jié)論:GB=GC.證明△BAG≌△CDG即可;

2)根據(jù)相似三角形的性質(zhì)得到,得到BC=,過GGHGDDEH,推出G,ECD四點(diǎn)共圓,根據(jù)圓周角定理得到∠GDH=GCE=BCE=ABG,根據(jù)相似三角形得,即可得到結(jié)論;

3)把k=代入,過FFJ⊥BCJCEN,反向延長交ADH,則FH⊥AD,過NNM⊥PCM,則NF+NM的最小值即為FJ的長,即可得到結(jié)論.

1)結(jié)論:GB=GC

理由:四邊形ABCD是矩形,

∵AB=DC∠A=∠CDG=90°

∵GA=GD,

∴△BAG≌△CDGSAS),

∴BG=CG

2)解:在矩形ABCD中,

∵∠A=∠ABC=90°,

∵CE⊥BG

∴∠CEB=90°,

∴∠A=∠CEB

∴∠AGB+∠ABG=∠ABG+∠GBC=90°,

∴∠AGB=∠GBC,

∴△ABG∽△ECB

=,

∵BG=,EBG的中點(diǎn),

∴BE=

∴BC=,

如圖1,過GGH⊥GDDEH

∴GD=BC-AG=

∵∠BEC=∠ADC=90°,

∴G,EC,D四點(diǎn)共圓,

∴∠GDH=∠GCE=∠BCE=∠ABG,

∴△AGB∽GHD,

=

∴GH=,

==

==;

3)當(dāng)k=時(shí),=,

如圖2,過FFJ⊥BCJCEN,反向延長交ADH,

FH⊥AD,過NNM⊥PCM,

∴NF+NM的最小值即為FJ的長,

==

=∵HJ=CD=AB=3,

∴FJ=

NF+NM的最小值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-3、-1、1、3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,則關(guān)于x的一次函數(shù)y=-x+a的圖象與坐標(biāo)軸圍成三角形的面積不超過4的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在函數(shù)的圖象上, 都是等腰直角三角形.斜邊都在軸上(是大于或等于2的正整數(shù)),點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市人民廣場上要建造一個(gè)圓形的噴水池,并在水池中央垂直安裝一個(gè)柱子,柱子頂端處裝上噴頭,由處向外噴出的水流(在各個(gè)方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知米,噴出的水流的最高點(diǎn)距水平面的高度是米,離柱子的距離為米.

求這條拋物線的解析式;

若不計(jì)其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,B=90°AB=BC,BCMABC的外角,BAC、BCM的平分線交于點(diǎn)D,ADBC交于點(diǎn)E,若BE=2,則AEDE=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB16cm,BC6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB3cm/s的速度向點(diǎn)B移動(不與點(diǎn)AB重合);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿CD2cm/s的速度向點(diǎn)D移動(不與點(diǎn)CD重合),經(jīng)過幾秒,△PDQ為直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張背面完全相同的卡片,正面上分別標(biāo)有數(shù)字﹣2,﹣1,12.把這四張卡片背面朝上,隨機(jī)抽取一張,記下數(shù)字為m;放回?cái)噭,再隨機(jī)抽取一張卡片,記下數(shù)字為n,則ymx+n不經(jīng)過第三象限的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在圓O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點(diǎn)C為弧BD的中點(diǎn),則AC的長是(  )

A.4B.2C.D.

查看答案和解析>>

同步練習(xí)冊答案