【題目】從廣州某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
【答案】(1)520千米;(2)300千米/小時.
【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時,根據(jù)題意列出分式方程求出未知數(shù)x的值.
試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)
(2)設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時
依題意有:=3 解得:x=120
經(jīng)檢驗:x=120分式方程的解且符合題意 高鐵平均速度:2.5×120=300千米/時
答:高鐵平均速度為 2.5×120=300千米/時.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BO、CO分別是∠ABC、∠ACB的角平分線,求:
(1)若∠A=50°,求∠BOC的度數(shù).
(2)在其他條件不變的情況下,若∠A=n°,則∠A與∠BOC之間有怎樣的數(shù)量關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結BE,DF.
(1)求證:OE=OF.
(2)當∠DOE等于 度時,四邊形BFDE為菱形。(直接填寫答案即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲怠H鐚τ谌我庹龑崝(shù)、x,可作變形:x+=(-)2+2,因為(-)2≥0,所以x+≥2(當x=時取等號).
記函數(shù)y=x+(a>0,x>0),由上述結論可知:當x=時,該函數(shù)有最小值為2.
直接應用: 已知函數(shù)y1=x(x>0)與函數(shù)y2 = (x>0),則當x= 時,y1+y2取得最小值為 .
變形應用: 已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求 的最小值,并指出取得該最小值時相應的x的值.
實際應用:汽車的經(jīng)濟時速是指汽車最省油的行駛速度。某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(+)升。若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
①、求y關于x的函數(shù)關系式(寫出自變量x的取值范圍);
②、求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結果保留小數(shù)點后一位).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校計劃選購甲、乙兩種圖書作為“校園讀書節(jié)”的獎品.已知甲圖書的單價是乙圖書單價的倍;用元單獨購買甲種圖書比單獨購買乙種圖書要少本.
(1)甲、乙兩種圖書的單價分別為多少元?
(2)若學校計劃購買這兩種圖書共本,且投入的經(jīng)費不超過元,要使購買的甲種圖書數(shù)量不少于乙種圖書的數(shù)量,則共有幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com