【題目】如圖,每個(gè)小正方形的邊長為1.
(1)直接寫出四邊形ABCD的面積和周長;
(2)求證:∠BCD=90°.
【答案】(1)四邊形ABCD的面積為14.5,四邊形ABCD的周長是3;(2)證明見解析.
【解析】
(1)用四邊形ABCD所在長方形的面積減去4個(gè)小三角形的面積,列出算式計(jì)算即可求得四邊形ABCD的面積;利用勾股定理分別求出AB、BC、CD、AD,即可求得四邊形ABCD的周長;
(2)求出BD2,利用勾股定理的逆定理即可證明;
(1)四邊形ABCD的面積=5×5﹣3×1÷2﹣4×2÷2﹣5×1÷2﹣5×1÷2=14.5;
由勾股定理得AB,BC2,CD,AD,
故四邊形ABCD的周長是23;
(2)連接BD.
∵BD2,BC2+CD2=20+5=25,
∴BC2+CD2=BD2,
∴△BCD是直角三角形,且∠BCD=90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計(jì)表如下:
(說明:成績80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績在70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;
(3)假設(shè)乙校800名學(xué)生都參加此次測試,估計(jì)成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店出售一種商品,其原價(jià)為元,現(xiàn)有兩種調(diào)價(jià)方案:一種是先提價(jià),在此基礎(chǔ)上又降價(jià);另一種是先降價(jià), 在此基礎(chǔ)上又提價(jià).
1)用這兩種方案調(diào)價(jià)的結(jié)果是否一樣?
2)兩種調(diào)價(jià)方案改為:一種是提價(jià);另一種是先提價(jià),在此基礎(chǔ)上又提價(jià),這兩種調(diào)價(jià)方案結(jié)果是否一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說法:
①當(dāng)m=1,且y1與y2恰好有三個(gè)交點(diǎn)時(shí)b有唯一值為1;
②當(dāng)b=2,且y1與y2恰有兩個(gè)交點(diǎn)時(shí),m>4或0<m<;
③當(dāng)m=-b時(shí),y1與y2一定有交點(diǎn);
④當(dāng)m=b時(shí),y1與y2至少有2個(gè)交點(diǎn),且其中一個(gè)為(0,m).
其中正確說法的序號為 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)B(2,0),與函數(shù)y=2x的圖象交于點(diǎn)A,則不等式0<kx+b<2x的解集為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時(shí),每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)生產(chǎn)這種產(chǎn)品每噸的成本為7萬元時(shí),求該產(chǎn)品的生產(chǎn)數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線( a≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;
(2)若拋物線(t≠0)也經(jīng)過A點(diǎn),求a與t之間的關(guān)系式;
(3)當(dāng)點(diǎn)A在拋物線上,且-2≤h<1時(shí),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com