【題目】如圖,∠1=∠2,∠A=∠F,求證:∠C=∠D.請(qǐng)閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
證明:∵∠1=∠2(已知)∠1=∠3(_______)
∴∠2=∠3(等量代換)
∴BD∥_____(_______)
∴∠4=_____(_______)
又∵∠A=∠F(已知)
∴AC∥_____(_______)
∴∠4=_____(_______)
∴∠C=∠D(等量代換)
【答案】對(duì)頂角相等 CE 同位角相等,兩直線平行 ∠C 兩直線平行,同位角相等 DF 內(nèi)錯(cuò)角相等,兩直線平行 ∠D 兩直線平行,內(nèi)錯(cuò)角相等.
【解析】
證出∠2=∠3,得出BD∥CE,由平行線的性質(zhì)得出∠4=∠C,然后用證出AC∥DF,由平行線的性質(zhì)得出∠4=∠D,即可得出結(jié)論.
解:∵∠1=∠2(已知),∠1=∠3(對(duì)頂角相等),
∴∠2=∠3(等量代換),
∴BD∥CE(同位角相等,兩直線平行),
∴∠4=∠C(兩直線平行,同位角相等),
又∵∠A=∠F(已知),
∴AC∥DF(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠4=∠D(兩直線平行,內(nèi)錯(cuò)角相等),
∴∠C=∠D(等量代換);
故答案為:對(duì)頂角相等;CE;同位角相等,兩直線平行;∠C;兩直線平行,同位角相等;DF;內(nèi)錯(cuò)角相等,兩直線平行;∠D;兩直線平行,內(nèi)錯(cuò)角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線上一點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;
(3)若m>,當(dāng)∠APB為直角時(shí),將該拋物線向左或向右平移t(0<t<)個(gè)單位,點(diǎn)C、P平移后對(duì)應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長(zhǎng)最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格當(dāng)中,三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上.直線與直線相交于點(diǎn).
(1)畫出將三角形向右平移5個(gè)單位長(zhǎng)度后的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).
(2)畫出三角形關(guān)于直線對(duì)稱的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).
(3)畫出將三角形繞著點(diǎn)旋轉(zhuǎn)后的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).
(4)在三角形,,中,三角形 與三角形 成軸對(duì)稱,三角形 與三角形 成中心對(duì)稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,證明定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
已知:點(diǎn)D、E分別是△ABC的邊AB、AC的中點(diǎn).
求證:DE∥BC,DE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為40,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m=10,n=20,表示“足球”的扇形的圓心角是72度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連結(jié)CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF:
(2)求證:PA是⊙O的切線;
(3)若FG=BF,且⊙O的半徑長(zhǎng)為3,求BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距50米,小烏龜從A地出發(fā)前往B地,第一次它前進(jìn)1米,第二次它后退2米,第三次再前進(jìn)3米,第四次又向后退4米…,按此規(guī)律行進(jìn),如果A地在數(shù)軸上表示的數(shù)為﹣16.
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點(diǎn)的右側(cè),經(jīng)過第七次行進(jìn)后小烏龜?shù)竭_(dá)點(diǎn)P,第八次行進(jìn)后到達(dá)點(diǎn)Q,點(diǎn)P、點(diǎn)Q到A地的距離相等嗎?說明理由?
(3)若B地在原點(diǎn)的右側(cè),那么經(jīng)過100次行進(jìn)后,小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意有理數(shù)a,b,
定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算.例如,2⊙5=2(2+5)﹣1=13.
(Ⅰ)求[1⊙(﹣2)]⊙3的值;
(Ⅱ)對(duì)于任意有理教m,n請(qǐng)你重新定義一種運(yùn)算“⊕”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n=_____.(用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,關(guān)于x的二次函數(shù)y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣3,0),點(diǎn)C(0,3),點(diǎn)D為二次函數(shù)的頂點(diǎn),DE為二次函數(shù)的對(duì)稱軸,E在x軸上.
(1)求拋物線的解析式;
(2)DE上是否存在點(diǎn)P到AD的距離與到x軸的距離相等?若存在求出點(diǎn)P,若不存在請(qǐng)說明理由;
(3)如圖2,DE的左側(cè)拋物線上是否存在點(diǎn)F,使2S△FBC=3S△EBC?若存在求出點(diǎn)F的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com