【題目】閱讀下面的解題過程并回答問題.

解方程:.

:①當(dāng)時(shí),原方程可化為,解得.經(jīng)檢驗(yàn),符合題意

②當(dāng)時(shí),原方程可化為,解得.經(jīng)檢驗(yàn),x的值不合題意,舍去;

③當(dāng)時(shí),原方程可化為,解得.經(jīng)檢驗(yàn),符合題意.

所以原方程的解是.

(1)根據(jù)上面的解題過程,求方程的解;

(2)根據(jù)上面的解題過程,求方程的解;

(3)方程 .(無(wú)”)

【答案】(1) ;(2);(3)無(wú).

【解析】

(1)x≥1x1解出方程;

(2) x≥1,0x1x0解出方程;

(3) 結(jié)合(2)的方法和結(jié)論,找出答案.

經(jīng)檢驗(yàn)x不合題意,舍去.

經(jīng)檢驗(yàn)x不合題意,舍去.

經(jīng)檢驗(yàn)x不合題意,舍去.

經(jīng)檢驗(yàn)x不合題意,舍去.

所以原方程無(wú)解.

故答案是:(1) ;(2)(3)無(wú).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有(個(gè).

=a;②同位角相等;③過一點(diǎn)有且只有一條直線垂直于已知直線;④一個(gè)數(shù)的平方根等于它本身,這個(gè)數(shù)是01;⑤經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件每件的進(jìn)價(jià)是乙種零件每件進(jìn)價(jià)的,用1600元單獨(dú)購(gòu)進(jìn)一種零件時(shí),購(gòu)進(jìn)甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進(jìn)價(jià)分別為多少元?

(2)若該商店計(jì)劃購(gòu)進(jìn)甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價(jià)是每件100元,乙種零件的批發(fā)價(jià)是每件130元,該商店計(jì)劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購(gòu)進(jìn)多少件甲種零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點(diǎn)分別在、軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動(dòng)點(diǎn)軸的上方,且滿足.

(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);

(2)連接,求的最小值;

(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以、、為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,BD平分∠ABC.過點(diǎn)DAB的平行線,過點(diǎn)BAC的平行線,兩平行線相交于點(diǎn)E, BCDE于點(diǎn)F,連接CE.求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落下點(diǎn)C1處;作∠BPC1的平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是等腰梯形,∠ABC=60°,若其四邊滿足長(zhǎng)度的眾數(shù)為5,平均數(shù)為 ,上、下底之比為1:2,則BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)4x+3=2x+7

(2)﹣2(x﹣1)=4

(3)

(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案