【題目】如圖,點A、B和線段MN都在數(shù)軸上,點A、M、N、B對應(yīng)的數(shù)字分別為﹣1、0、2、11.線段MN沿數(shù)軸的正方向以每秒1個單位的速度移動,移動時間為t秒.
(1)用含有t的代數(shù)式表示AM的長為
(2)當(dāng)t= 秒時,AM+BN=11.
(3)若點A、B與線段MN同時移動,點A以每秒2個單位速度向數(shù)軸的正方向移動,點B以每秒1個單位的速度向數(shù)軸的負(fù)方向移動,在移動過程,AM和BN可能相等嗎?若相等,請求出t的值,若不相等,請說明理由.
【答案】(1) ;(2) .
【解析】分析:(1)根據(jù)點M開始表示的數(shù)結(jié)合其運動速度和時間,即可得出運動后點M的表示的數(shù),再依據(jù)點A表示的數(shù)為-1即可得出結(jié)論;(2)分別找出AM、BN,根據(jù)AM+BN=11即可列出關(guān)于t的含絕對值符號的一元一次方程,解方程即可得出結(jié)論;
(3)假設(shè)能夠相等,找出AM、BN,根據(jù)AM=BN即可列出關(guān)于t的含絕對值符號的一元一次方程,解方程即可得出結(jié)論.
本題解析:(1)∵點A、M、N對應(yīng)的數(shù)字分別為﹣1、0、2,線段MN沿數(shù)軸的正方向以每秒1個單位的速度移動,移動時間為t秒,
∴移動后M表示的數(shù)為t,N表示的數(shù)為t+2,
∴AM=t﹣(﹣1)=t+1.
(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,
∵AM+BN=11,
∴t+1+|9﹣t|=11,
解得:
(3)假設(shè)能相等 ,則點A表示的數(shù)為2t﹣1,M表示的數(shù)為t,N表示的數(shù)為t+2,B表示的數(shù)為11﹣t,
∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,
∵AM=BN,
∴|t﹣1|=|2t﹣9|,
故在運動的過程中AM和BN能相等,此時運動的時間為 秒和8秒.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將點P(﹣1,4)向右平移2個單位長度后,再向下平移3個單位長度,得到點P1 , 則點P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)完“利用三角函數(shù)測高”這節(jié)內(nèi)容之后,某興趣小組開展了測量學(xué)校旗桿高度的實踐活動,如圖,在測點A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點A到旗桿底部C的水平距離AC=20m,根據(jù)測量數(shù)據(jù),求旗桿CD的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某燈具廠計劃一天生產(chǎn)300盞景觀燈,但由于各種原因,實際每天生產(chǎn)景觀燈數(shù)與計劃每天生產(chǎn)景觀燈數(shù)相比有出入.下表是某周的生產(chǎn)情況(增產(chǎn)記為正、減產(chǎn)記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)求該廠本周實際生產(chǎn)景觀燈的盞數(shù);
(2)求產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)景觀燈的盞數(shù);
(3)該廠實行每日計件工資制,每生產(chǎn)一盞景觀燈可得60元,若超額完成任務(wù),則超過部分每盞另獎20元,若未能完成任務(wù),則少生產(chǎn)一盞扣25元,那么該廠工人這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果ax2+24x+b=(mx-3)2,那么( )
A.a=16,b=9,m=-4
B.a=64,b=9,m=-8
C.a=-16,b=-9,m=-8
D.a=16,b=9,m=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的學(xué)習(xí)生活,某校九年級1班組織學(xué)生參加春游活動,所聯(lián)系的旅行社收費標(biāo)準(zhǔn)如下:
如果人數(shù)超過25人,每增加1人,人均活動費用降低2元,但人均活動費用不得低于75元.
如果人數(shù)不超過25人,人均活動費用為100元.
春游活動結(jié)束后,該班共支付給該旅行社活動費用2800元,請問該班共有多少人參加這次春游活動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)應(yīng)怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com