【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
【答案】(1)詳見解析;(2)2.
【解析】
試題分析:(1)連接OB,由AC是⊙O的直徑可得∠ABC=90°,∠C+∠BAC=90°.再由OA=OB可得∠BAC=∠OBA. 又因∠PBA=∠C,所以∠PBA+∠OBA=90°,即PB⊥OB.即可判定PB是⊙O的切線.(2)可證△ABC∽△PBO,根據(jù)相似三角形的性質(zhì)即可求BC的長.
試題解析: (1)證明:如圖所示,連接OB.
∵AC是⊙O的直徑,
∴∠ABC=90°,∠C+∠BAC=90°.
∵OA=OB,
∴∠BAC=∠OBA.
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,即PB⊥OB.
∴PB是⊙O的切線.
(2)解:⊙O的半徑為,∴OB=,AC=.
∵OP∥BC,
∴∠BOP=∠OBC=∠C.
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴,即.
∴BC=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“好書伴我成長”的讀書活動中,某中學(xué)為了解八年級300名學(xué)生讀書情況,隨機調(diào)查了八年級50名學(xué)生讀書的冊數(shù).統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
(1)求這50個樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù).
(2)根據(jù)樣本數(shù)據(jù),估計該校八年級300名學(xué)生在本次活動中讀書多于2冊的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點P(﹣2,1),則這個函數(shù)的圖象位于( )
A.第一、三象限
B.第二、三象限
C.第二、四象限
D.第三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的有( )
①1是絕對值最小的數(shù); ②0既不是正數(shù),也不是負數(shù);
③一個有理數(shù)不是整數(shù)就是分數(shù); ④0的絕對值是0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):5,15,75,45,25,75,45,35,45,35,那么40是這一組數(shù)據(jù)的( 。
A. 平均數(shù)但不是中位數(shù) B. 平均數(shù)也是中位數(shù)
C. 眾數(shù) D. 中位數(shù)但不是平均數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A. (x+y)2=x2+y2 B. (x﹣y)2=x2﹣2xy﹣y2
C. x(x﹣1)=x2﹣1 D. (x+1)(x﹣1)=x2﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com