【題目】在半徑等于5 cm的圓內有長為cm的弦,則此弦所對的圓周角為

A.60°B.120°C.60°或120°D.30°或120°

【答案】C

【解析】

根據(jù)題意畫出相應的圖形,由ODAB,利用垂徑定理得到DAB的中點,由AB的長求出ADBD的長,且得出OD為角平分線,在RtAOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).

如圖所示,

ODAB,

DAB的中點,即AD=BD=,

RtAOD中,OA=5,AD=,

sinAOD=,

又∵∠AOD為銳角,

∴∠AOD=60°,

∴∠AOB=120°,

∴∠ACB=AOB=60°,

又∵圓內接四邊形AEBC對角互補,

∴∠AEB=120°,

則此弦所對的圓周角為60°120°

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里有標號為的五個小球,除數(shù)字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個球.

1)下列說法:

①摸一次,摸出一號球和摸出號球的概率相同;

②有放回的連續(xù)摸次,則一定摸出號球兩次;

③有放回的連續(xù)摸次,則摸出四個球標號數(shù)字之和可能是

其中正確的序號是

2)若從袋中不放回地摸兩次,求兩球標號數(shù)字是一奇一偶的概率,(用列表法或樹狀圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側面示意圖為圖2;使用時為了散熱,在底板下面墊入散熱架O′AC后,電腦轉到AO′B′的位置(如圖3),側面示意圖為圖4,已知OA=0B=20cm,B′O′OA,垂足為C.

(1)求點O′的高度O′C;(精確到0.1cm)

(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)

(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應繞點O′按順時針方向旋轉多少度?

參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的對稱軸為直線,該拋物線與軸的兩個交點分別為,與軸的交點為,其中

1)寫出點的坐標________;

2)若拋物線上存在一點,使得的面積是的面積的倍,求點的坐標;

3)點是線段上一點,過點軸的垂線交拋物線于點,求線段長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗探究:

如圖,是有公共頂點的等腰直角三角形,,交于、

(問題發(fā)現(xiàn))

1)把繞點旋轉到圖,、的關系是_________(“相等”或“不相等”),請直接寫出答案;

(類比探究)

2)若,,把繞點旋轉,當時,在圖中作出旋轉后的圖形,并求出此時的長;

(拓展延伸)

3)在(2)的條件下,請直接寫出旋轉過程中線段的最小值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀)

輔助線是幾何解題中溝通條件與結論的橋梁.在眾多類型的輔助線中,輔助圓作為一條曲線型輔助線,顯得獨特而隱蔽.

性質:如圖,若,則點在經(jīng)過,,三點的圓上.

(問題解決)

運用上述材料中的信息解決以下問題:

1)如圖,已知.求證:

2)如圖,點,位于直線兩側.用尺規(guī)在直線上作出點,使得.(要求:要有畫圖痕跡,不用寫畫法)

3)如圖,在四邊形中,,,點的延長線上,連接,.求證:外接圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDO⊥AB,垂足為O,點B′在邊AB上,且與點B關于直線DO對稱,連接DB′,AD

1)求證:△DOB∽△ACB;

2)若AD平分∠CAB,求線段BD的長;

3)當△AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB和△OCD中,OAOB,OCOD,∠AOB=∠COD=α,AC、BD交于M

(1)如圖1,當α=90°時,∠AMD的度數(shù)為   °

(2)如圖2,當α=60°時,∠AMD的度數(shù)為   °

(3)如圖3,當△OCDO點任意旋轉時,∠AMDα是否存在著確定的數(shù)量關系?如果存在,請你用表示∠AMD,并圖3進行證明;若不確定,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結果精確到0.1小時)

查看答案和解析>>

同步練習冊答案