【題目】如圖,扇形DOE的半徑為3,邊長為 的菱形OABC的頂點A,C,B分別在OD,OE, 上,若把扇形DOE圍成一個圓錐,則此圓錐的高為(
A.
B.
C.
D.

【答案】D
【解析】解:連接OB,AC,BO與AC相交于點F,
∵在菱形OABC中,AC⊥BO,CF=AF,F(xiàn)O=BF,∠COB=∠BOA,
又∵扇形DOE的半徑為3,
∴FO=BF=1.5,
∵菱形OABC的邊長為 ,
cos∠FOC= = =
∴∠FOC=30°,
∴∠EOD=2×30°=60°,
= =π,
底面圓的周長為:2πr=π,
解得:r= ,圓錐母線為:3,
則此圓錐的高為: =
故選:D.
連接OB,AC,BO與AC相交于點F,首先利用菱形的性質(zhì)以及利用三角函數(shù)關(guān)系得出∠FOC=30°,進而得出底面圓錐的周長,即可得出底面圓的半徑和母線長,利用勾股定理得出圓錐的高即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水源村在今年退耕還林活動中,計劃植樹200畝,全村在完成植樹40畝后,某環(huán)保組織加入村民植樹活動,并且該環(huán)保組織植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了13天完成.
(1)全村每天植樹多少畝?
(2)如果全村植樹每天需2000元工錢,環(huán)保組織是義務(wù)植樹,因此實際工錢比計劃節(jié)約多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MNEF分別表示兩個互相平行的鏡面,一束光線AB照射到鏡面MN上,反射光線為BC,此時∠1=2;光線BC經(jīng)過鏡面EF反射后的光線為CD,此時∠3=4.試判斷ABCD的位置關(guān)系,你是如何思考的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州享有“中國筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的2倍,各地的運費如圖所示.設(shè)安排x件產(chǎn)品運往A地.
(1)當n=200時,①根據(jù)信息填表:

A地

B地

C地

合計

產(chǎn)品件數(shù)(件)

x

2x

200

運費(元)

30x

②若運往B地的件數(shù)不多于運往C地的件數(shù),總運費不超過4000元,則有哪幾種運輸方案?
(2)若總運費為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當點D是△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC,垂足為D,點EAB上,EFBC,垂足為F

(1)ADEF平行嗎?為什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點O是△ABC內(nèi)的一點,BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大小;

(3)設(shè)AOB=α,那么當α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D在AB上,在下列四個條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能滿足△ADC與△ACB相似的條件是( )

A.①、②、③
B.①、③、④
C.②、③、④
D.①、②、④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出A1點的坐標及sin∠B1A1C1的值;
以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出 將△ABC放大后的△A2B2C2 , 并寫出A2點的坐標;
(2)若點D(a,b)在線段AB上,直接寫出經(jīng)過(2)的變化后點D的對應(yīng)點D2的坐標.

查看答案和解析>>

同步練習(xí)冊答案