【題目】如圖,中,,,,點(diǎn)在內(nèi),且平分,平分,過點(diǎn)作直線,分別交、于點(diǎn)、,若與相似,則線段的長為( )
A.5B.C.5或D.6
【答案】B
【解析】
分△APQ∽△ABC,△APQ∽△ACB兩種情況,結(jié)合相似三角形的性質(zhì)和三角形內(nèi)切圓求解即可.
解:若△APQ∽△ABC,
∴∠APQ=∠ABC,
∴PQ∥BC,,
∴∠PDB=∠DBC,
∵BD平分∠ABC,
∴∠PBD=∠CBD,
∴∠PBD =∠PDB,
∴PB=PD,同理,DQ=CQ,
∵,,,
∴BC=,
設(shè)AP=x,根據(jù)得,
∴AQ=,
∴PB=PD=8-x,CQ=DQ=6-,
∴PQ=PD+QD=,
∴,即,
解得:x=,
∴PQ=;
若△APQ∽△ACB,
則,
由題意知:D為△ABC的內(nèi)心,設(shè)△ABC的內(nèi)切圓交AB于M,交AC于N,
可知四邊形AMDN為正方形,
∴∠A=∠AMD=∠AND=∠MDN=90°,
∴AM∥DN,AN∥DM,
∴∠MPD=∠NDQ,∠MDP=∠NQD,
∴△MPD∽△NDQ,
∴,
∵AB=8,AC=6,BC=10,
∴DM=DN==2,
∴AM=AN=2,
設(shè)PM=x,則,
∴NQ=,
∵,即,
解得:x=或-2(舍),
∴AP=+2=,
∴PQ=AP×BC÷AC=×10÷6=.
綜上:PQ的值為.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=3.點(diǎn)E在線段BA上從B點(diǎn)以每秒1個(gè)單位的速度出發(fā)向A點(diǎn)運(yùn)動(dòng),F(xiàn)是射線CD上一動(dòng)點(diǎn),在點(diǎn)E、F運(yùn)動(dòng)的過程中始終保持EF=5,且CF>BE,點(diǎn)P是EF的中點(diǎn),連接AP.設(shè)點(diǎn)E運(yùn)動(dòng)時(shí)間為ts.
(1)在點(diǎn)E、F運(yùn)動(dòng)的過程中,AP的長度存在一個(gè)最小值,當(dāng)AP的長度取得最小值時(shí),點(diǎn)P的位置應(yīng)該在 .
(2)當(dāng)AP⊥EF時(shí),求出此時(shí)t的值
(3)以P為圓心作⊙P,當(dāng)⊙P與矩形ABCD三邊所在直線都相切時(shí),求出此時(shí)t的值,并指出此時(shí)⊙P的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為鈍角,把邊AC繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)90°得AD,把邊BC繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°得BE,作DM⊥AB于點(diǎn)M,EN⊥AB于點(diǎn)N,若AB=5,EN=2,則DM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),與x軸正半軸交于點(diǎn)C,連接BC,P為線段AC上的動(dòng)點(diǎn),P與A,C不重合,作PQ∥BC交AB于點(diǎn)Q,A關(guān)于PQ的對稱點(diǎn)為D,連接PD,QD,BD.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)D在拋物線上時(shí),求點(diǎn)P的坐標(biāo).
(3)設(shè)點(diǎn)P的橫坐標(biāo)為x,△PDQ與△ABC的重疊部分的面積為S
①直接寫出S與x的函數(shù)關(guān)系式;
②當(dāng)△BDQ為直角三角形時(shí),直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測量某公園人工湖兩側(cè)A,B兩個(gè)涼亭之間的距離.選涼亭A,C作為觀測點(diǎn).如圖,現(xiàn)測得∠CAB=45°,∠ACB=98°,AC=200米,請計(jì)算A,B兩個(gè)涼亭之間的距離、(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.414,≈1.732,sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明去超市采購防疫物品,超市提供下表所示、兩種套餐,小明決定購買50份套餐.超市為了促進(jìn)消費(fèi),給出兩種優(yōu)惠方式,方式一:現(xiàn)金支付總額每滿700元立減200元;方式二:現(xiàn)金支付總額每滿600元送300元現(xiàn)金券,現(xiàn)金券可等同現(xiàn)金使用,但是使用現(xiàn)金券的總額不能超過應(yīng)付總金額.
套餐類別 | 一次性防護(hù)口罩 | 免洗洗手液 | 套餐價(jià)格 |
2包 | 1瓶 | 71元 | |
1包 | 2瓶 | 67元 |
(1)求一次性防護(hù)口罩和免洗洗手液各自的單價(jià);
(2)小明覺得優(yōu)惠方式二比方式一的優(yōu)惠力度更大,他計(jì)劃分兩次購買,第一次付現(xiàn)金購買一部分套餐,獲得的現(xiàn)金券在購買剩下的部分的時(shí)候全部用掉.請你通過計(jì)算說明小明這樣做能否比優(yōu)惠方式一付款更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,分別延長OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科幻小說《流浪地球》的銷量急劇上升.為應(yīng)對這種變化,某網(wǎng)店分別花20000元和30000元先后兩次購進(jìn)該小說,第二次的數(shù)量比第一次多500套,且兩次進(jìn)價(jià)相同.
(1)該科幻小說第一次購進(jìn)多少套?每套進(jìn)價(jià)多少元?
(2)根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250套;銷售單價(jià)每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.
①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店店主期盼最高日利潤達(dá)到2500元,他的愿望能實(shí)現(xiàn)嗎?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B的坐標(biāo)是(0,6),C為OB的中點(diǎn),將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′BC′,若反比例函數(shù)的圖像恰好經(jīng)過A′B的中點(diǎn)D,求這個(gè)反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com