【題目】如圖1,點(diǎn)E為正方形ABCD的邊AB上一點(diǎn),EF⊥EC,且EF=EC,連接AF.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.求證:BD=AF+2DM.
【答案】(1)∠EAF=135°.(2)詳見解析.
【解析】
(1)過點(diǎn)F作FM⊥AB并交AB的延長(zhǎng)線于點(diǎn)M,只要證明△EBC≌△FME(AAS)即可解決問題;
(2)過點(diǎn)F作FG∥AB交BD于點(diǎn)G.首先證明四邊形ABGF為平行四邊形,再證明△FGM≌△DMC(AAS)即可解決問題;
(1)解:過點(diǎn)F作FM⊥AB并交AB的延長(zhǎng)線于點(diǎn)M,
∵四邊形ABCD是正方形,
∴∠B=∠M=∠CEF=90°,
∴∠MEF+∠CEB=90°,∠CEB+∠BCE=90°,
∴∠MEF=∠ECB,
∵EC=EF,
∴△EBC≌△FME(AAS)
∴FM=BE
∴EM=BC
∵BC=AB,
∴EM=AB,
∴EM﹣AE=AB﹣AE
∴AM=BE,
∴FM=AM,
∵FM⊥AB,
∴∠MAF=45°,
∴∠EAF=135°.
(2)證明:過點(diǎn)F作FG∥AB交BD于點(diǎn)G.
由(1)可知∠EAF=135°,
∵∠ABD=45°
∴∠EAF+∠ABD=180°,
∴AF∥BG,
∵FG∥AB,
∴四邊形ABGF為平行四邊形,
AF=BG,F(xiàn)G=AB,
∵AB=CD,
∴FG=CD,
∵AB∥CD,
∴FG∥CD,
∴∠FGM=∠CDM,
∵∠FMG=∠CMD
∴△FGM≌△CDM(AAS),
∴GM=DM,
∴DG=2DM,
∴BD=BG+DG=AF+2DM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,
(1)證明:CF=EB.
(2)證明:AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)的點(diǎn)A(m﹣3,2m﹣2)在第二象限,且m為整數(shù),B(3,1).
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),求:①點(diǎn)P的坐標(biāo);②PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),他們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由
(2)判斷此時(shí)線段PC和線段PQ的關(guān)系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過對(duì)角線BD上一點(diǎn)P作EF∥BC,GH∥AB,則圖中面積相等的平行四邊形共有_____對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E為AB邊上的一點(diǎn),點(diǎn)F為對(duì)角線BD上的一點(diǎn),且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖1,請(qǐng)直接寫出AE與DF的數(shù)量關(guān)系 ;
②將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖2所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由.
(2)若四邊形ABCD為矩形,BC=mAB,其他條件都不變.
①如圖3,猜想AE與DF的數(shù)量關(guān)系并說明理由;
②將△EBF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請(qǐng)?jiān)趫D4中畫出草圖,并直接寫出AE′和DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華中學(xué)暑假要進(jìn)行全面維修,有甲、乙兩個(gè)工程隊(duì)共同完成,甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成所需天數(shù)的,若由甲隊(duì)先做10天,剩下的工程再由甲、乙兩隊(duì)合作,再做30天可以完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少秀?
(2)已知甲隊(duì)每天的施工費(fèi)用為0.84萬元,乙隊(duì)每天的施工費(fèi)用為0.56萬元,若由甲、乙兩隊(duì)合作,則工程預(yù)算的施工費(fèi)用50萬元是否夠用?若不夠用,需追加多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,例如:將式子x2﹣x﹣6分解因式.這個(gè)式子的常數(shù)項(xiàng)﹣6=2×(﹣3),一次項(xiàng)系數(shù)﹣1=2+(﹣3),這個(gè)過程可用十字相乘的形式形象地表示:先分解常數(shù)項(xiàng),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù).如圖所示.這種分解二次三項(xiàng)式的方法叫“十字相乘法”,請(qǐng)同學(xué)們認(rèn)真觀察,分析理解后,解答下列問題.
(1)分解因式:x2+7x﹣18.
(2)填空:若x2+px﹣8可分解為兩個(gè)一次因式的積,則整數(shù)p的所有可能值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃容器高19cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1.5cm的點(diǎn)A處有一只蜘蛛,在蜘蛛正對(duì)面的圓柱形容器的外側(cè),距上底1.5cm處的點(diǎn)B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請(qǐng)你幫蜘蛛計(jì)算它沿容器側(cè)面爬行的最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com