【題目】綜合與探究
如圖1所示,直線y=x+c與x軸交于點A(-4,0),與y軸交于點C,拋物線y=-x2+bx+c經(jīng)過點A,C.
(1)求拋物線的解析式
(2)點E在拋物線的對稱軸上,求CE+OE的最小值;
(3)如圖2所示,M是線段OA的上一個動點,過點M垂直于x軸的直線與直線AC和拋物線分別交于點P、N.
①若以C,P,N為頂點的三角形與△APM相似,則△CPN的面積為 ;
②若點P恰好是線段MN的中點,點F是直線AC上一個動點,在坐標平面內(nèi)是否存在點D,使以點D,F(xiàn),P,M為頂點的四邊形是菱形?若存在,請直接寫出點D的坐標;若不存在,請說明理由.
注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標為()
【答案】(1)y=-x2-3x+4;(2)5;(3)①或4;②存在,D點坐標為(,)或(-1+,)或(-1-,-)或(-4,3).
【解析】
(1)根據(jù)已知條件求出C,再將點A代入即可求出解析式.
(2) 做點關于拋物線的對稱軸直線的對稱點,連,交直線于點.連,根據(jù)勾股定理即可解答.
(3)①分類討論不同相似情況,利用條件求出線段長度即可解答.
②設坐標為,得出P點坐標,代入式子求出a,根據(jù)菱形性質(zhì)即可求出D點坐標.
(1)將代入
將和代入
拋物線解析式為
(2)做點關于拋物線的對稱軸直線的對稱點,連,交直線于點.
連,此時的值最小.
拋物線對稱軸位置線
由勾股定理
的最小值為5
(3)①當時,
,則關于拋物線對稱軸對稱
的面積為
當時
由已知為等腰直角三角形,
過點作于點,設點坐標為
,
則為,
代入
解得
的面積為4
故答案為:或4
②存在
設坐標為
則為
則點坐標為
把點坐標代入
解得(舍去),
當時,點在垂直平分線上,則
當時,由菱形性質(zhì)點坐標為,,
當時,、關于直線對稱,點坐標為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應邊BC.CE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點P、Q、K,其中S△PQC=3,則圖中三個陰影部分的面積和為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為改善辦學條件,計劃采購A、B兩種型號的空調(diào),已知采購3臺A型空調(diào)和2臺B型空調(diào),需費用39000元;4臺A型空調(diào)比5臺B型空調(diào)的費用多6000元.
(1)求A型空調(diào)和B型空調(diào)每臺各需多少元;
(2)若學校計劃采購A、B兩種型號空調(diào)共30臺,且A型空調(diào)的臺數(shù)不少于B型空調(diào)的一半,兩種型號空調(diào)的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為慶祝國慶節(jié)舉辦游園活動,小軍來到摸球兌獎活動場地,李老師對小軍說:“這里有甲、乙兩個盒子,里面都裝有一些乒乓球,你只能選擇在其中一個盒子中摸球。”獲獎規(guī)則如下:
甲盒中有白色乒乓球4個,黃色乒乓球1個,一人只能摸一次且一次摸出一個球,若這個球為黃色球,則可獲得玩具熊一個,否則不得獎;
乙盒中有白色乒乓球2個,黃色乒乓球3個,一人只能摸一次且一次摸出兩個球,若這兩個球均為黃色球,則可獲得玩具熊一個,否則不得獎;
請問小軍在哪個盒子內(nèi)摸球獲得玩具熊的機會更大?請用概率知識說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在單位為1的網(wǎng)格中,有△ABC,且的三個頂點都在格點上:
(1)以點C為原點建立直角坐標系,并確定A點的坐標;
(2)將△ABC向下平移5個單位,得到△A1B1C1(不寫作法);
(3)以點C為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A2B2C2(不寫作法);
(4)求弧BB2的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若|m+3|+=0,點P(m,n)關于x軸的對稱點P′為二次函數(shù)圖象頂點,則二次函數(shù)的解析式為( 。
A. y=(x﹣3)2+2B. y=(x+3)2﹣2
C. y=(x﹣3)2﹣2D. y=(x+3)2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com