【題目】如圖,若,添加一個(gè)條件使,則添加的條件是________.
【答案】或者∠DAB=∠CAE,∠DAE=∠BAC.
【解析】
由已知及相似三角形的判定可以從邊和角兩方面考慮解答.(1)由邊解答,已知兩組對應(yīng)邊成比例,只要添加第三組對應(yīng)邊成比例即可.(2)由角解答,只要添加已知兩組對應(yīng)邊的夾角∠DAB和∠BAC相等即可,又由∠DAB=∠CAE也能推出∠DAB和∠BAC相等即△ADE∽△ACB.
由已知,
若 ,則△ADE∽△ACB.
若,∠DAE=∠BAC,則△ADE∽△ACB.
若∠DAB=∠CAE,則∠DAB+∠BAE=∠CAE+∠BAE,即,∠DAE=∠BAC,又,則△ADE∽△ACB.
故答案為:或者∠DAB=∠CAE,∠DAE=∠BAC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個(gè)單位長度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).
(1)在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來的2倍,得到線段(點(diǎn)A,B的對應(yīng)點(diǎn)分別為).畫出線段;
(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點(diǎn)的四邊形的面積是 個(gè)平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點(diǎn)E在BC延長線上,EC=BC,連接DE,AC,AC⊥AD于點(diǎn)A、
(1)求證:四邊形ACED是矩形;
(2)連接BD,交AC于點(diǎn)F.若AC=2AD,猜想∠E與∠BDE的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽光市場某個(gè)體商戶購進(jìn)某種電子產(chǎn)品,每個(gè)進(jìn)價(jià)50元.調(diào)查發(fā)現(xiàn),當(dāng)售價(jià)為80元時(shí),平均一周可賣出160個(gè),而當(dāng)每售價(jià)每降低2元時(shí),平均一周可多賣出20個(gè).若設(shè)每個(gè)電子產(chǎn)品降價(jià)x元,
(1)根據(jù)題意,填表:
進(jìn)價(jià)(元) | 售價(jià)(元) | 每件利潤(元) | 銷量(個(gè)) | 總利潤(元) | |
降價(jià)前 | 50 | 80 | 30 | 160 | |
降價(jià)后 | 50 | ________ | ________ | ________ | ________ |
(2)若商戶計(jì)劃每周盈利5200元,且盡量減少庫存,則每個(gè)電子產(chǎn)品應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)校門前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來到山腳下進(jìn)行測量.測量方案如下:如圖,首先,小明站在地面上的點(diǎn)A處,測得電線桿頂端點(diǎn)P的仰角是45;然后小明向前走6米到達(dá)點(diǎn)B處,測得電線桿頂端點(diǎn)P和電線桿底端點(diǎn)Q的仰角分別是60和30,設(shè)小明的眼睛到地面的距離為1.6米.請根據(jù)以上測量的數(shù)據(jù),計(jì)算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=6.點(diǎn)P在邊AC上運(yùn)動(dòng),過點(diǎn)P作PD⊥AB于點(diǎn)D,以AP、AD為鄰邊作PADE.設(shè)□PADE與△ABC重疊部分圖形的面積為y,線段AP的長為x(0<x≤6).
(1)求線段PE的長(用含x的代數(shù)式表示).
(2)當(dāng)點(diǎn)E落在邊BC上時(shí),求x的值.
(3)求y與x之間的函數(shù)關(guān)系式.
(4)直接寫出點(diǎn)E到△ABC任意兩邊所在直線距離相等時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長線交于點(diǎn)D,DE⊥PO交PO延長線于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D, AC交⊙O于點(diǎn)E,∠BAC=45°。
(1)求∠EBC的度數(shù);
(2)求證:BD=CD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com