【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn)。
(1)求b、c的值;
(2)P為拋物線上的點(diǎn),且滿足S△PAB=8,求P點(diǎn)的坐標(biāo)
(3)設(shè)拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。
【答案】(1)b=-2,c=-3;(2)符合x的值為點(diǎn)P有三個(gè);(3)Q點(diǎn)的坐標(biāo)為(1,-2)
【解析】
(1)拋物線y=x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(-1,0),B(3,0),把它們分別代入得到二元一次方程組,解這個(gè)方程組求得b,c值;
(2)設(shè)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)S△PAB=8,列出方程求得y值,分別代入從而求得點(diǎn)P的坐標(biāo);
(3)由AC長為定值,要使△QAC的周長最小,只需QA+QC最。蓭缀沃R(shí)可知,Q是直線BC與對(duì)稱軸x=1的交點(diǎn),再求得BC的直線解析式,從而求得點(diǎn)Q的坐標(biāo).
(1)根據(jù)題意可得,1-b+c=0;9+3b+c=0
∴b=-2,c=-3
∴拋物線的解析式為:y=x2-2x-3.
(2)設(shè)點(diǎn)P的坐標(biāo)為(x,y)
根據(jù)題意可知,S△PAB=×4|y|=8,∴|y|=4,∴y=±4
當(dāng)y=4時(shí),x2-2x-3=4,∴x=或x=-+1
當(dāng)y=-4時(shí),x2-2x-3=-4,∴x=1
∴當(dāng)P點(diǎn)的坐標(biāo)分別為(,4)、(-+1,4)、(1,-4)時(shí),
S△PAB=8;
(3)在拋物線y=x2-2x-3的對(duì)稱軸上存在點(diǎn)Q,使得△QAC的周長最。
∵AC長為定值,
∴要使△QAC的周長最小,只需QA+QC最。
∵點(diǎn)A關(guān)于對(duì)稱軸x=1的對(duì)稱點(diǎn)是B(3,0),
∴由幾何知識(shí)可知,Q是直線BC與對(duì)稱軸x=1的交點(diǎn),
拋物線y=x2-2x-3與y軸交點(diǎn)C的坐標(biāo)為(0,-3),設(shè)直線BC的解析式為y=kx-3.
∵直線BC過點(diǎn)B(3,0),
∴3k-3=0,
∴k=1.
∴直線BC的解析式為y=x-3,
∴當(dāng)x=1時(shí),y=-2.
∴點(diǎn)Q的坐標(biāo)為(1,-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點(diǎn)C的坐標(biāo);
(3)結(jié)合圖象直接寫出不等式0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,矩形OABC的兩個(gè)頂點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)是(8,2),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),連接AP,以AP為一邊朝點(diǎn)B方向作正方形PADE,連接OP并延長與DE交于點(diǎn)M,設(shè)CP=a(a>0).
(1)請(qǐng)用含a的代數(shù)式表示點(diǎn)P,E的坐標(biāo).
(2)連接OE,并把OE繞點(diǎn)E逆時(shí)針方向旋轉(zhuǎn)90°得EF.如圖2,若點(diǎn)F恰好落在x軸的正半軸上,求a與的值.
(3)①如圖1,當(dāng)點(diǎn)M為DE的中點(diǎn)時(shí),求a的值.
②在①的前提下,并且當(dāng)a>4時(shí),OP的延長線上存在點(diǎn)Q,使得EQ+PQ有最小值,請(qǐng)直接寫出EQ+PQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點(diǎn)C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E,F分別為BC上的點(diǎn),EF=,∠BAC=135°,∠EAF=90°,tan∠AEF=1.
(1)若1<BE<2,求CF的取值范圍;
(2)若AB=,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形的一條邊,將矩形折疊,使得頂點(diǎn)落在邊上的點(diǎn)處. 如圖,已知折痕與邊交于點(diǎn),連結(jié).
(1)求證:;
(2)若,求邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90°,AB=8,點(diǎn)O是AB的中點(diǎn).將一個(gè)邊長足夠大的Rt△DEF的直角頂點(diǎn)E放在點(diǎn)O處,并將其繞點(diǎn)O旋轉(zhuǎn),始終保持DE與AC邊交于點(diǎn)G,EF與BC邊交于點(diǎn)H.
(1)當(dāng)點(diǎn)G在AC邊什么位置時(shí),四邊形CGOH是正方形.
(2)等腰直角三角ABC的邊被Rt△DEF覆蓋部分的兩條線段CG與CH的長度之和是否會(huì)發(fā)生變化,如不發(fā)生變化,請(qǐng)求出CG與CH之和的值:如發(fā)生變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過計(jì)算說明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com