【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是

【答案】①③④
【解析】解:觀察函數(shù)圖象,發(fā)現(xiàn): 開口向下a<0;與y軸交點在y軸正半軸c>0;對稱軸在y軸右側(cè) >0;頂點在x軸上方 >0.
①∵a<0,c>0,﹣ >0,
∴b>0,
∴abc<0,①成立;
②∵ >0,
<0,②不成立;
③∵OA=OC,
∴xA=﹣c,
將點A(﹣c,0)代入y=ax2+bx+c中,
得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;
④∵OA=﹣xA , OB=xB , xAxB=
∴OAOB=﹣ ,④成立.
綜上可知:①③④成立.
故答案為:①③④.
觀察函數(shù)圖象,根據(jù)二次函數(shù)圖象與系數(shù)的關(guān)系找出“a<0,c>0,﹣ >0”,再由頂點的縱坐標在x軸上方得出 >0.①由a<0,c>0,﹣ >0即可得知該結(jié)論成立;②由頂點縱坐標大于0即可得出該結(jié)論不成立;③由OA=OC,可得出xA=﹣c,將點A(﹣c,0)代入二次函數(shù)解析式即可得出該結(jié)論成立;④結(jié)合根與系數(shù)的關(guān)系即可得出該結(jié)論成立.綜上即可得出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調(diào)查,按做義工的時間t(單位:小時),將學生分成五類:A類(0≤t≤2),B類(2<t≤4),C類(4<t≤6),D類(6<t≤8),E類(t>8). 繪制成尚不完整的條形統(tǒng)計圖如圖.根據(jù)以上信息,解答下列問題:

(1)E類學生有人,補全條形統(tǒng)計圖;
(2)D類學生人數(shù)占被調(diào)查總?cè)藬?shù)的%;
(3)從該班做義工時間在0≤t≤4的學生中任選2人,求這2人做義工時間都在2<t≤4中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水庫堤壩的橫斷面是梯形,測得BC長為30m,CD長為20 m,斜坡AB的坡比為1:3,斜坡CD的坡比為1:2,則壩底的寬AD為m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,拋物線y=ax2﹣ax+6與x軸負半軸交于點A,與x軸的正半軸交于點B,且AB=7.

(1)如圖1,求a的值;
(2)如圖2,點P在第一象限內(nèi)拋物線上,過P作PH∥AB,交y軸于點H,連接AP,交OH于點F,設HF=d,點P的橫坐標為t,求d與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)如圖3,在(2)的條件下,當PH=2d時,將射線AP沿著x軸翻折交拋物線于點M,在拋物線上是否存在點N,使∠AMN=45°,若存在,求出點N的坐標.若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨完成所需要的天數(shù)是甲公司單獨完成所需天數(shù)的1.5倍,如果甲公司單獨工作10天,再由乙公司單獨工作15天,這樣就可完成整個工程的三分之二.
(1)求甲、乙兩公司單獨完成這項工程各需多少天?
(2)上級要求該工程完成的時間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項目離開,剩下的工程由乙公司單獨完成,并且在規(guī)定時間內(nèi)完成,求甲、乙兩公司合作至少多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學們對新詞匯的關(guān)注度,某數(shù)學興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務服務”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時代”四個熱詞在全校學生中進行了抽樣調(diào)查,要求被調(diào)查的每位同學只能從中選擇一個我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名同學?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算。
(1)解方程:y2﹣7y+10=0
(2)計算:( 2﹣|﹣1+ |+2sin60°+(1﹣ 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點,與y軸交于點C(0,﹣3).[圖2、圖3為解答備用圖]

(1)k= , 點A的坐標為 , 點B的坐標為
(2)設拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求點Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

同步練習冊答案