【題目】如圖,ABO直徑,BCAB于點B,點C是射線BC上任意一點,過點CCDO于點D,連接AD

(1)求證:BCCD

(2)若∠C60°,BC3,求AD的長.

【答案】(1)證明見解析;(2).

【解析】

(1)根據(jù)切線的判定定理得到BCO的切線,再利用切線長定理證明即可;

(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計算即可.

(1)ABO直徑,BCAB,

BCO的切線,

CDO于點D,

BCCD;

(2)連接BD,

BCCD,∠C60°,

∴△BCD是等邊三角形,

BDBC3,∠CBD60°,

∴∠ABD30°,

ABO直徑,

∴∠ADB90°,

ADBDtanABD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax2a≠0).

1)該二次函數(shù)圖象的對稱軸是直線   

2)若該二次函數(shù)的圖象開口向上,當﹣1≤x≤5時,函數(shù)圖象的最高點為M,最低點為N,點M的縱坐標為,求點M和點N的坐標;

3)若該二次函數(shù)的圖象開口向下,對于該二次函數(shù)圖象上的兩點Ax1y1)、Bx2y2),當x2≥3時,均有y1y2,請結(jié)合圖象,直接寫出x1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點MN同時停止運動,問點MN運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點邊上,,邊相交于點

1)求證:;

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知PA,PB分別切⊙O于點A、B,∠P60°,PA8,那么弦AB的長是_____;連接OA、OB,則∠AOB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,ACBE相交于點F,則∠BFC為(  )

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線x軸交于AB兩點(AB的左側(cè)),與y軸交于點C,頂點為D

1)請直接寫出點A,C,D的坐標;

2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;

3)如圖(2),F為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點 O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

同步練習冊答案