已知:如圖,,為⊙O的弦,點(diǎn)上,若,,,則的長為                  .
6
延長DO交BC于F,過點(diǎn)O作OE⊥AB點(diǎn)E,OG⊥BC于點(diǎn)G,連接OB,設(shè)DB為r;可知△BDF為等邊三角形,且OF=r-4,OG=,結(jié)合垂徑定理得出BG=5,分別在Rt△OBE中和Rt△OBG中,根據(jù)勾股定理列出等式,聯(lián)立求解即可得出r的值.
解:延長DO交BC于F,過點(diǎn)O作OE⊥AB點(diǎn)E,OG⊥BC于點(diǎn)G,連接OB,設(shè)DB為r;

又∠ODB=∠B=60°,
故△BDF為等邊三角形,
即DB=DF=BF=r;
又OD=4,可得OE=2,
OF=r-4,OG=,
又OG⊥BC,且BC=10,
故BG=5;
在Rt△OBE中,OB2=BE2+OE2;
在Rt△OBG中,OB2=BG2+OG2;
代入即可得出
r=6;
即BD=6;
故答案為6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知直線PA交⊙0于A、B兩點(diǎn),AE是⊙0的直徑.點(diǎn)C為⊙0上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D。
(1)求證:CD為⊙0的切線;
(2)若DC+DA=6,⊙0的直徑為l0,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011山東煙臺,12,4分)如圖,六邊形ABCDEF是正六邊形,曲線FK1K2K3K4K5K6K7……叫做“正六邊形的漸開線”,其中,,,,,……的圓心依次按點(diǎn)AB,CDE,F循環(huán),其弧長分別記為l1,l2l3,l4l5,l6,…….當(dāng)AB=1時(shí),l2 011等于(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)C在⊙O上,延長直徑AB到點(diǎn)P,連接PC,∠COB=2∠PCB

(1)求證:PC是⊙O的切線;
(2)若AC=PC,且PB=3,M是⊙O下半圓弧的中點(diǎn),求MA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙的直徑過弦的中點(diǎn),∠°,則∠等于
A.°B.°C.°D.°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:如圖23—1,的周長為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),


,,


解決問題

(1)利用探究的結(jié)論,計(jì)算邊長分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長分別為,,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個(gè)邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長分別為,,,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是⊙O的直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,若∠AEC=∠ODB.

(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖6,已知AB是的直徑,BD=CB,∠CAB=30°,請根據(jù)已知條件和所給圖形,寫出三個(gè)正確的結(jié)論:(除AO=OB=BD外)

①、                 ;②、              ;③、          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A、B、C都在上,若∠AOB=72°,則∠ACB的度數(shù)為

A.18°     B.30°       C.36°    D.72°

查看答案和解析>>

同步練習(xí)冊答案