【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為米的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)的長度為米,矩形區(qū)域的面積為米.
求證:;
求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
為何值時,有最大值?最大值是多少?
【答案】(1)見解析;(2)y=;(3)當(dāng)時,有最大值,最大值為平方米
【解析】
(1)根據(jù)三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE=2BE;
(2)設(shè)BE=a,則有AE=2a,表示出a與2a,進(jìn)而表示出y與x的關(guān)系式,并求出x的范圍即可;
(3)利用二次函數(shù)的性質(zhì)求出y的最大值,以及此時x的值即可.
解:∵三塊矩形區(qū)域的面積相等,
∴矩形面積是矩形面積的倍,
又∵是公共邊,
∴;
設(shè),則,
∴,
∴,,
∴,
∵,
∴,
∴
∵,且二次項系數(shù)為,
∴當(dāng)時,有最大值,最大值為平方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點D,點E,BE、CD相交于點O.∠1=∠2,則圖中全等三角形共有( )
A. 4對B. 3對C. 2對D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖像如圖所示,圖像過點,對稱軸為直線,下列結(jié)論:(1);(2);(3)若點、點、點在該函數(shù)圖像上,則;(4)若方程的兩根為和,且,則.其中正確結(jié)論的序號是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D,E是BC邊上的兩點,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,則∠CAE的度數(shù)為( )
A.10°B.20°
C.30°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6,B′是邊AC上一點.將三角形紙片折疊,使點B與點B′重合,折痕與BC、AB分別相交于E、F.設(shè)BE=x,
(1)若x=4,求B′C的長;
(2)當(dāng)△AFB′是直角三角形時,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com