如圖,在平面直角坐標(biāo)系中,直線AB與直線BC相交于點(diǎn)B(-2,2),直線AB與y軸相交于點(diǎn)A(0,4),直線BC與x軸、y軸分別相交于點(diǎn)D(-1,0)、點(diǎn)C.
(1)求直線AB的解析式;
(2)過點(diǎn)A作BC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)P是直線AB上一動點(diǎn)且在x軸的上方,如果以點(diǎn)D、E、P、Q為頂點(diǎn)的平行四邊形的面積等于△ABC面積,請求出點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).
(1)設(shè)直線AB為y=kx+b,
代入點(diǎn)B,A,
2=-2k+b
4=b
,
解得b=4,k=1,
所以直線AB為y=x+4;

(2)設(shè)過點(diǎn)A且平行于直線BC的直線為y=kx+c,
根據(jù)題意得:k=
2
-2+1
=-2
,
則直線AE的直線為y=-2x+c,
則代入點(diǎn)A得c=4,
則直線AE為y=-2x+4,
則點(diǎn)E為(2,0);


(3)∵點(diǎn)D(-1,0)、點(diǎn)B(-2,2),
∴直線BD的解析式為:y=-2x-2,
∴點(diǎn)C(0,-2),
∴AC=6,
∴S△ABC=
1
2
×6×2=6,
∵點(diǎn)P是直線AB上一動點(diǎn)且在x軸的上方,
∴若點(diǎn)Q在x軸上方,
則PQDE,且PQ=DE,∴P(-2,2)
此時點(diǎn)Q1(1,2),Q2(-5,2);
若點(diǎn)Q在x軸下方,
則Q3( 3,-2);
∴Q1(1,2),Q2(-5,2),Q3( 3,-2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
(1)求出C點(diǎn)的坐標(biāo);
(2)過點(diǎn)C作CDAB交⊙O1于D,若過點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
(3)如圖,已知M(1,-2
3
),經(jīng)過A、M兩點(diǎn)有一動圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“城市發(fā)展交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x≤28時,V=80;當(dāng)28<x≤188時,V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.
(1)求當(dāng)28<x≤188時,V關(guān)于x的函數(shù)表達(dá)式;
(2)若車流速度V不低于50千米/時,求當(dāng)車流密度x為多少時,車流量P(單位:輛/時)達(dá)到最大,并求出這一最大值.
(注:車流量是單位時間內(nèi)通過觀測點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖中的圖象(折線ABCDE)描述了一汽車在某一直道上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,給出下列說法:
①汽車共行駛了120千米;
②汽車在行駛途中停留了0.5小時;
③汽車在整個行駛過程中的平均速度為
160
3
千米/時;
④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.
其中正確的說法有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某物流公司的甲、乙兩輛貨車分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途經(jīng)配貨站C,甲車先到達(dá)C地,并在C地用1小時配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,圖是甲、乙兩車間的距離y(千米)與乙車出發(fā)x(時)的函數(shù)的部分圖象.
(1)A、B兩地的距離是______千米,甲車出發(fā)______小時到達(dá)C地;
(2)求乙車出發(fā)2小時后直至到達(dá)A地的過程中,y與x的函數(shù)關(guān)系式及x的取值范圍,并在圖中補(bǔ)全函數(shù)圖象;
(3)乙車出發(fā)多長時間,兩車相距150千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商廈試銷一種成本為50元/件的商品,規(guī)定試銷時的銷售單價不低于成本,又不高于80元/件,試銷中銷售量y(件)與銷售單價x(元/件)的關(guān)系可近似的看作一次函數(shù)(如圖).
(1)求y與x的關(guān)系式;
(2)設(shè)商廈獲得的毛利潤(毛利潤=銷售額-成本)為s(元),則銷售單價定為多少時,該商廈獲利最大,最大利潤是多少?此時的銷售量是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如果y+3與x+2成正比例,且x=3時,y=7.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)畫出該函數(shù)圖象;并觀察當(dāng)x取什么值時,y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

觀察圖形

上圖中每個小正方形都是由四根火柴稈組成的,那么火柴稈的數(shù)量y(根)與小正方形的個數(shù)n的關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

看圖填空:
(1)當(dāng)y=0時,x=______;
(2)直線對應(yīng)的函數(shù)表達(dá)式是______.

查看答案和解析>>

同步練習(xí)冊答案