【題目】如圖所示,在RtABC中,∠C=90°,∠A=30°AB邊中點(diǎn)DBC邊距離為3 cm,現(xiàn)在AC邊找點(diǎn)E,使BE+ED值最小,則BE+ED的最小值是________cm.

【答案】6

【解析】

30°的RtABC補(bǔ)成等邊三角形,知點(diǎn)B和點(diǎn)關(guān)于AC對(duì)稱(chēng).連接DAC于點(diǎn)E,則E即是所求作的點(diǎn),且BE+ED的最小值即是DE的長(zhǎng).

解:如圖:作點(diǎn)B關(guān)于AC對(duì)稱(chēng)點(diǎn),DF⊥BC,連接A,D. ,則的長(zhǎng)為BE+ED的最小值

Rt△ABC中,∠ACB=90°,AB邊中點(diǎn)DBC邊距離為3 cm,DF⊥BC

∴DF=3,∠DFB=∠ACB=90°

∴DF//AC

∵D為AB邊中點(diǎn),DF//AC

∴AC=2DF=6

∵點(diǎn)B、點(diǎn)關(guān)于AC對(duì)稱(chēng), ∠BAC=30°

,

是等邊三角形

又∵

=6

BE+ED的最小值即是DE的長(zhǎng)為:6

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線(xiàn);

(2)過(guò)點(diǎn)B作⊙O的切線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCDCB中,若∠ACB=∠DBC,則不能證明兩個(gè)三角形全等的條件是( )

A.ABC=∠DCBB.A=∠DC.AB=DCD.AC=DB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+EDF=180°,以①②③中的兩個(gè)作為條件,另一個(gè)作為結(jié)論,可以使結(jié)論成立的有幾個(gè)(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南建省30年來(lái),各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會(huì)固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)完成下列問(wèn)題:

(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為   億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對(duì)應(yīng)的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿(mǎn)足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿(mǎn)足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱(chēng)此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線(xiàn)x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫(xiě)出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,EAC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,ADBE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角坐標(biāo)系中,已知A(1,0),以點(diǎn)A為圓心畫(huà)圓,點(diǎn)M(4,4)在⊙A上,直線(xiàn)y=﹣x+b過(guò)點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).

(1)①填空:⊙A的半徑為   ,b=   .(不需寫(xiě)解答過(guò)程)

②判斷直線(xiàn)BC與⊙A的位置關(guān)系,并說(shuō)明理由.

(2)若EF切⊙A于點(diǎn)F分別交ABBCG、E,且FEBC,求的值.

(3)若點(diǎn)P在⊙A上,點(diǎn)Qy軸上一點(diǎn)且在點(diǎn)C下方,當(dāng)PQM為等腰直角三角形時(shí),直接寫(xiě)出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案